Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI

被引:33
|
作者
Meier, Dominik S. [2 ,4 ,6 ]
Guttmann, Charles R. G. [5 ]
Tummala, Subhash [2 ,3 ,4 ]
Moscufo, Nicola
Cavallari, Michele
Tauhid, Shahamat [2 ,3 ,4 ]
Bakshi, Rohit [1 ,2 ,3 ,4 ,5 ]
Weiner, Howard L. [1 ,2 ,4 ]
机构
[1] Harvard Med Sch, Partners Multiple Sclerosis Ctr, Brigham & Womens Hosp, Boston, MA USA
[2] Harvard Med Sch, Ann Romney Ctr Neurol Dis, Brigham & Womens Hosp, Boston, MA USA
[3] Harvard Med Sch, Lab Neuroimaging Res, Brigham & Womens Hosp, Boston, MA USA
[4] Harvard Med Sch, Dept Neurol, Brigham & Womens Hosp, Boston, MA USA
[5] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA USA
[6] Univ Hosp Basel, Med Image Anal Ctr, Basel, Switzerland
关键词
Magnetic resonance imaging; multiple sclerosis; medical image analysis; brain morphometry; imaging biomarker; WHITE-MATTER LESIONS; DEEP GRAY-MATTER; AUTOMATIC SEGMENTATION; ATROPHY; TISSUE; VOLUME; IMAGES;
D O I
10.1111/jon.12491
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSEA pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high-resolution 3-dimensional T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODSTo address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D-FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan-rescans. RESULTSIntraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false-positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan-rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 .72 mL over a range of 0-24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONSThis pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 50 条
  • [21] Identification of Chronic Active Multiple Sclerosis Lesions on 3T MRI
    Absinta, M.
    Sati, P.
    Fechner, A.
    Schindler, M. K.
    Nair, G.
    Reich, D. S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) : 1233 - 1238
  • [22] T1/T2 ratio from 3T MRI improves multiple sclerosis cortical lesion contrast
    Manning, Abigail R.
    Beck, Erin S.
    Schindler, Matthew K.
    Nair, Govind
    Clark, Kelly A.
    Parvathaneni, Prasanna
    Reich, Daniel S.
    Shinohara, Russell T.
    Solomon, Andrew J.
    JOURNAL OF NEUROIMAGING, 2023, 33 (03) : 434 - 445
  • [23] Whole Brain Volume Measured from 1.5T versus 3T MRI in Healthy Subjects and Patients with Multiple Sclerosis
    Chu, Renxin
    Tauhid, Shahamat
    Glanz, Bonnie I.
    Healy, Brian C.
    Kim, Gloria
    Oommen, Vinit V.
    Khalid, Fariha
    Neema, Mohit
    Bakshi, Rohit
    JOURNAL OF NEUROIMAGING, 2016, 26 (01) : 62 - 67
  • [24] An effective method for computerized prediction and segmentation of multiple sclerosis lesions in brain MRI
    Roy, Sudipta
    Bhattacharyya, Debnath
    Bandyopadhyay, Samir Kumar
    Kim, Tai-Hoon
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 140 : 307 - 320
  • [25] Multislice brain myelin water fractions at 3T in multiple sclerosis
    Oh, Joonmi
    Han, Eric T.
    Lee, Michael C.
    Nelson, Sarah J.
    Pelletier, Daniel
    JOURNAL OF NEUROIMAGING, 2007, 17 (02) : 156 - 163
  • [26] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Ali Alijamaat
    Alireza NikravanShalmani
    Peyman Bayat
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 1459 - 1467
  • [27] An adaptive sparse Bayesian model combined with probabilistic label fusion for multiple sclerosis lesion segmentation in brain MRI
    Wang, Jingjing
    Liu, Meiru
    Zhang, Chunhui
    Xu, Huaqiang
    Zhang, Liren
    Zhao, Yuefeng
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 105 : 695 - 704
  • [28] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Alijamaat, Ali
    NikravanShalmani, Alireza
    Bayat, Peyman
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) : 1459 - 1467
  • [29] Automatic multiple sclerosis lesion detection in brain MRI by FLAIR thresholding
    Cabezas, Mariano
    Oliver, Arnau
    Roura, Eloy
    Freixenet, Jordi
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 115 (03) : 147 - 161
  • [30] Brain tissue and myelin volumetric analysis in multiple sclerosis at 3T MRI with various in-plane resolutions using synthetic MRI
    Laetitia Saccenti
    Christina Andica
    Akifumi Hagiwara
    Kazumasa Yokoyama
    Mariko Yoshida Takemura
    Shohei Fujita
    Tomoko Maekawa
    Koji Kamagata
    Alice Le Berre
    Masaaki Hori
    Nobutaka Hattori
    Shigeki Aoki
    Neuroradiology, 2019, 61 : 1219 - 1227