Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI

被引:37
作者
Meier, Dominik S. [2 ,4 ,6 ]
Guttmann, Charles R. G. [5 ]
Tummala, Subhash [2 ,3 ,4 ]
Moscufo, Nicola
Cavallari, Michele
Tauhid, Shahamat [2 ,3 ,4 ]
Bakshi, Rohit [1 ,2 ,3 ,4 ,5 ]
Weiner, Howard L. [1 ,2 ,4 ]
机构
[1] Harvard Med Sch, Partners Multiple Sclerosis Ctr, Brigham & Womens Hosp, Boston, MA USA
[2] Harvard Med Sch, Ann Romney Ctr Neurol Dis, Brigham & Womens Hosp, Boston, MA USA
[3] Harvard Med Sch, Lab Neuroimaging Res, Brigham & Womens Hosp, Boston, MA USA
[4] Harvard Med Sch, Dept Neurol, Brigham & Womens Hosp, Boston, MA USA
[5] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA USA
[6] Univ Hosp Basel, Med Image Anal Ctr, Basel, Switzerland
关键词
Magnetic resonance imaging; multiple sclerosis; medical image analysis; brain morphometry; imaging biomarker; WHITE-MATTER LESIONS; DEEP GRAY-MATTER; AUTOMATIC SEGMENTATION; ATROPHY; TISSUE; VOLUME; IMAGES;
D O I
10.1111/jon.12491
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSEA pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high-resolution 3-dimensional T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODSTo address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D-FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan-rescans. RESULTSIntraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false-positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan-rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 .72 mL over a range of 0-24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONSThis pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 35 条
[11]   EFNS guidelines on the use of neuroimaging in the management of multiple sclerosis [J].
Filippi, M ;
Rocca, MA ;
Arnold, DL ;
Bakshi, R ;
Barkhof, F ;
De Stefano, N ;
Fazekas, F ;
Frohman, E ;
Wolinsky, JS .
EUROPEAN JOURNAL OF NEUROLOGY, 2006, 13 (04) :313-325
[12]   Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain [J].
Fischl, B ;
Salat, DH ;
Busa, E ;
Albert, M ;
Dieterich, M ;
Haselgrove, C ;
van der Kouwe, A ;
Killiany, R ;
Kennedy, D ;
Klaveness, S ;
Montillo, A ;
Makris, N ;
Rosen, B ;
Dale, AM .
NEURON, 2002, 33 (03) :341-355
[13]   Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging [J].
Garcia-Lorenzo, Daniel ;
Francis, Simon ;
Narayanan, Sridar ;
Arnold, Douglas L. ;
Collins, D. Louis .
MEDICAL IMAGE ANALYSIS, 2013, 17 (01) :1-18
[14]   Trimmed-Likelihood Estimation for Focal Lesions and Tissue Segmentation in Multisequence MRI for Multiple Sclerosis [J].
Garcia-Lorenzo, Daniel ;
Prima, Sylvain ;
Arnold, Douglas L. ;
Collins, D. Louis ;
Barillot, Christian .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2011, 30 (08) :1455-1467
[15]   Incorporating domain knowledge into the fuzzy connectedness framework: Application to brain lesion volume estimation in multiple sclerosis [J].
Horsfield, Mark A. ;
Bakshi, Rohit ;
Rovaris, Marco ;
Rocca, Mara A. ;
Dandamudi, Venkata S. R. ;
Valsasina, Paola ;
Judica, Elda ;
Lucchini, Fulvio ;
Guttmann, Charles R. G. ;
Sormani, Maria Pia ;
Filippi, Massimo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2007, 26 (12) :1670-1680
[16]   Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images [J].
Jain, Saurabh ;
Sima, Diana M. ;
Ribbens, Annemie ;
Cambron, Melissa ;
Maertens, Anke ;
Van Hecke, Wim ;
De Mey, Johan ;
Barkhof, Frederik ;
Steenwijk, Martijn D. ;
Daams, Marita ;
Maes, Frederik ;
Van Huffel, Sabine ;
Vrenken, Hugo ;
Smeets, Dirk .
NEUROIMAGE-CLINICAL, 2015, 8 :367-375
[17]  
Johnson H, 2017, INSIGHT J, V12
[18]   Power estimation for non-standardized multisite studies [J].
Keshavan, Anisha ;
Paul, Friedemann ;
Beyer, Mona K. ;
Zhu, Alyssa H. ;
Papinutto, Nico ;
Shinohara, Russell T. ;
Stern, William ;
Amann, Michael ;
Bakshi, Rohit ;
Bischof, Antje ;
Carriero, Alessandro ;
Comabella, Manuel ;
Crane, Jason C. ;
D'Alfonso, Sandra ;
Demaerel, Philippe ;
Dubois, Benedicte ;
Filippi, Massimo ;
Fleischer, Vinzenz ;
Fontaine, Bertrand ;
Gaetano, Laura ;
Goris, An ;
Graetz, Christiane ;
Groeger, Adriane ;
Groppa, Sergiu ;
Hafler, David A. ;
Harbo, Hanne F. ;
Hemmer, Bernhard ;
Jordan, Kesshi ;
Kappos, Ludwig ;
Kirkishk, Gina ;
Llufriu, Sara ;
Magon, Stefano ;
Martinelli-Boneschi, Filippo ;
McCauley, Jacob L. ;
Montalban, Xavier ;
Muehlau, Mark ;
Pelletier, Daniel ;
Pattanya, Pradip M. ;
Pericak-Vance, Margaret ;
Cournu-Rebeix, Isabelle ;
Rocca, Maria A. ;
Rovira, Alex ;
Schlaeger, Regina ;
Saiz, Albert ;
Sprenger, Till ;
Stecco, Alessandro ;
Uitdehaag, Bernard M. J. ;
Villoslada, Pablo ;
Wattjes, Mike P. ;
Weiner, Howard .
NEUROIMAGE, 2016, 134 :281-294
[19]   Sample size requirements for one-year treatment effects using deep gray matter volume from 3T MRI in progressive forms of multiple sclerosis [J].
Kim, Gloria ;
Chu, Renxin ;
Yousuf, Fawad ;
Tauhid, Shahamat ;
Stazzone, Lynn ;
Houtchens, Maria K. ;
Stankiewicz, James M. ;
Severson, Christopher ;
Kimbrough, Dorlan ;
Quintana, Francisco J. ;
Chitnis, Tanuja ;
Weiner, Howard L. ;
Healy, Brian C. ;
Bakshi, Rohit .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2017, 127 (11) :971-980
[20]   Time-series analysis of MRI intensity patterns in multiple sclerosis [J].
Meier, DS ;
Guttmann, CRG .
NEUROIMAGE, 2003, 20 (02) :1193-1209