Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI

被引:33
|
作者
Meier, Dominik S. [2 ,4 ,6 ]
Guttmann, Charles R. G. [5 ]
Tummala, Subhash [2 ,3 ,4 ]
Moscufo, Nicola
Cavallari, Michele
Tauhid, Shahamat [2 ,3 ,4 ]
Bakshi, Rohit [1 ,2 ,3 ,4 ,5 ]
Weiner, Howard L. [1 ,2 ,4 ]
机构
[1] Harvard Med Sch, Partners Multiple Sclerosis Ctr, Brigham & Womens Hosp, Boston, MA USA
[2] Harvard Med Sch, Ann Romney Ctr Neurol Dis, Brigham & Womens Hosp, Boston, MA USA
[3] Harvard Med Sch, Lab Neuroimaging Res, Brigham & Womens Hosp, Boston, MA USA
[4] Harvard Med Sch, Dept Neurol, Brigham & Womens Hosp, Boston, MA USA
[5] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA USA
[6] Univ Hosp Basel, Med Image Anal Ctr, Basel, Switzerland
关键词
Magnetic resonance imaging; multiple sclerosis; medical image analysis; brain morphometry; imaging biomarker; WHITE-MATTER LESIONS; DEEP GRAY-MATTER; AUTOMATIC SEGMENTATION; ATROPHY; TISSUE; VOLUME; IMAGES;
D O I
10.1111/jon.12491
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSEA pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high-resolution 3-dimensional T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODSTo address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D-FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan-rescans. RESULTSIntraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false-positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan-rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 .72 mL over a range of 0-24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONSThis pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 50 条
  • [1] Brain MRI Lesion Load at 1.5T and 3T versus Clinical Status in Multiple Sclerosis
    Stankiewicz, James M.
    Glanz, Bonnie I.
    Healy, Brian C.
    Arora, Ashish
    Neema, Mohit
    Benedict, Ralph H. B.
    Guss, Zachary D.
    Tauhid, Shahamat
    Buckle, Guy J.
    Houtchens, Maria K.
    Khoury, Samia J.
    Weiner, Howard L.
    Guttmann, Charles R. G.
    Bakshi, Rohit
    JOURNAL OF NEUROIMAGING, 2011, 21 (02) : e50 - e56
  • [2] Determinants of brain iron in multiple sclerosis A quantitative 3T MRI study
    Khalil, M.
    Langkammer, C.
    Ropele, S.
    Petrovic, K.
    Wallner-Blazek, M.
    Loitfelder, M.
    Jehna, M.
    Bachmaier, G.
    Schmidt, R.
    Enzinger, C.
    Fuchs, S.
    Fazekas, F.
    NEUROLOGY, 2011, 77 (18) : 1691 - 1697
  • [3] Detecting macromolecular differences of the CSF in low disability multiple sclerosis using quantitative MT MRI at 3T
    Lawless, Richard D.
    McNnight, Colin D.
    O'Grady, Kristin P.
    Combes, Anna J. E.
    Rogers, Baxter P.
    Witt, Atlee A.
    Visagie, Mereze
    Houston, Delaney C.
    Prock, Logan E.
    Bagnato, Francesca R.
    Smith, Seth A.
    MULTIPLE SCLEROSIS JOURNAL-EXPERIMENTAL TRANSLATIONAL AND CLINICAL, 2023, 9 (04)
  • [4] Consensus of algorithms for lesion segmentation in brain MRI studies of multiple sclerosis
    De Rosa, Alessandro Pasquale
    Benedetto, Marco
    Tagliaferri, Stefano
    Bardozzo, Francesco
    D'Ambrosio, Alessandro
    Bisecco, Alvino
    Gallo, Antonio
    Cirillo, Mario
    Tagliaferri, Roberto
    Esposito, Fabrizio
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] A comprehensive approach to the segmentation of multichannel three-dimensional MR brain images in multiple sclerosis
    Datta, Sushmita
    Narayana, Ponnada A.
    NEUROIMAGE-CLINICAL, 2013, 2 : 184 - 196
  • [6] Unified Approach for Multiple Sclerosis Lesion Segmentation on Brain MRI
    Balasrinivasa Rao Sajja
    Sushmita Datta
    Renjie He
    Meghana Mehta
    Rakesh K. Gupta
    Jerry S. Wolinsky
    Ponnada A. Narayana
    Annals of Biomedical Engineering, 2006, 34 : 142 - 151
  • [7] Unified approach for multiple sclerosis lesion segmentation on brain MRI
    Sajja, BR
    Datta, S
    He, RJ
    Mehta, M
    Gupta, RK
    Wolinsky, JS
    Narayana, PA
    ANNALS OF BIOMEDICAL ENGINEERING, 2006, 34 (01) : 142 - 151
  • [8] MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
    Egger, Christine
    Opfer, Roland
    Wang, Chenyu
    Kepp, Timo
    Sormani, Maria Pia
    Spies, Lothar
    Barnett, Michael
    Schippling, Sven
    NEUROIMAGE-CLINICAL, 2017, 13 : 264 - 270
  • [9] Quantifying brain tissue volume in multiple sclerosis with automated lesion segmentation and filling
    Valverde, Sergi
    Oliver, Arnau
    Roura, Eloy
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Sastre-Garriga, Jaume
    Montalban, Xavier
    Rovira, Alex
    Llado, Xavier
    NEUROIMAGE-CLINICAL, 2015, 9 : 640 - 647
  • [10] Proton Density Fat Suppressed MRI in 3T Increases the Sensitivity of Multiple Sclerosis Lesion Detection in the Cervical Spinal Cord
    Efstratios Karavasilis
    George Velonakis
    George Argiropoulos
    Athanasios Athanasakos
    Loukia S Poulou
    Panagiotis Toulas
    Nikolaos L Kelekis
    Efstathios P Efstathopoulos
    Clinical Neuroradiology, 2019, 29 : 45 - 50