Microbial Electrosynthesis and Anaerobic Fermentation: An Economic Evaluation for Acetic Acid Production from CO2 and CO

被引:73
作者
Christodoulou, Xenia [1 ]
Velasquez-Orta, Sharon B. [1 ]
机构
[1] Newcastle Univ, Sch Chem Engn & Adv Mat, Fac Sci Agr & Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
基金
英国工程与自然科学研究理事会;
关键词
OXIDATION; SYSTEMS; CONVERSION; ETHANE; REUSE;
D O I
10.1021/acs.est.6b02101
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial electrosynthesis (MES) and anaerobic fermentation (AF) are two biological processes capable of reducing CO2, CO, and water into acetic acid, an essential industrial reagent. In this study, we evaluated investment and production costs of acetic acid via MES and AF, and compared them to industrial chemical processes: methanol carbonylation and ethane direct oxidation. Production and investment costs were found high-priced for MES (1.44 pound/kg, 1770 pound/t) and AF (4.14 pound/kg, 1598 pound/t) because of variable and fixed costs and low production yields (100 t/y) compared to methanol carbonylation (0.26 pound/kg, 261 pound/t) and ethane direct oxidation (0.11 pound/kg, 258 pound/t). However, integrating AF with MES would reduce the release of CO2 double production rates (200 t/y), and decrease investment costs by 9% (1366 pound/t). This resulted into setting the production costs at 0.24 pound/kg which is currently market competitive (0.48 pound/kg). This economically feasible bioprocess produced molar flow rates of 4550 mol per day from MES and AF independently. Our findings offer a bright opportunity toward the use and scale-up of MES and AF for an economically viable acetic acid production process.
引用
收藏
页码:11234 / 11242
页数:9
相关论文
共 38 条
[31]   Multimodel simulations of carbon monoxide:: Comparison with observations and projected near-future changes [J].
Shindell, D. T. ;
Faluvegi, G. ;
Stevenson, D. S. ;
Krol, M. C. ;
Emmons, L. K. ;
Lamarque, J. -F. ;
Petron, G. ;
Dentener, F. J. ;
Ellingsen, K. ;
Schultz, M. G. ;
Wild, O. ;
Amann, M. ;
Atherton, C. S. ;
Bergmann, D. J. ;
Bey, I. ;
Butler, T. ;
Cofala, J. ;
Collins, W. J. ;
Derwent, R. G. ;
Doherty, R. M. ;
Drevet, J. ;
Eskes, H. J. ;
Fiore, A. M. ;
Gauss, M. ;
Hauglustaine, D. A. ;
Horowitz, L. W. ;
Isaksen, I. S. A. ;
Lawrence, M. G. ;
Montanaro, V. ;
Mueller, J. -F. ;
Pitari, G. ;
Prather, M. J. ;
Pyle, J. A. ;
Rast, S. ;
Rodriguez, J. M. ;
Sanderson, M. G. ;
Savage, N. H. ;
Strahan, S. E. ;
Sudo, K. ;
Szopa, S. ;
Unger, N. ;
van Noije, T. P. C. ;
Zeng, G. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2006, 111 (D19)
[32]   Clostridium aceticum -: A potential organism in catalyzing carbon monoxide to acetic acid:: Application of response surface methodology [J].
Sim, Jia Huey ;
Kamaruddin, Azlina Harun ;
Long, Wei Sing ;
Najafpour, Ghasem .
ENZYME AND MICROBIAL TECHNOLOGY, 2007, 40 (05) :1234-1243
[33]  
Sinnott R.K., 2005, Coulson and Richardson's Chemical Engineering Volume 6 - Chemical Engineering Design, V6
[34]   Energetic and economic evaluation of the production of acetic acid via ethane oxidation [J].
Smejkal, Q ;
Linke, D ;
Baerns, M .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2005, 44 (04) :421-428
[35]   Economics of Acetic Acid Production by Partial Oxidation of Ethane [J].
Soliman, Moustafa ;
Al-Zeghayera, Yousef ;
Al-Awadi, Abdulrhman S. ;
Al-Mayman, Sulaiman .
2ND INTERNATIONAL CONFERENCE ON CHEMISTRY AND CHEMICAL PROCESS (ICCCP 2012), 2012, 3 :200-208
[36]   Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J].
Villano, Marianna ;
Aulenta, Federico ;
Ciucci, Costanza ;
Ferri, Tommaso ;
Giuliano, Antonio ;
Majone, Mauro .
BIORESOURCE TECHNOLOGY, 2010, 101 (09) :3085-3090
[37]  
Wakatsuki K., 2015, CHEM COMM M APIC 201
[38]   Recent advances in processes and catalysts for the production of acetic acid [J].
Yoneda, N ;
Kusano, S ;
Yasui, M ;
Pujado, P ;
Wilcher, S .
APPLIED CATALYSIS A-GENERAL, 2001, 221 (1-2) :253-265