SADDLE TOWERS AND MINIMAL k-NOIDS IN H2 x R

被引:23
作者
Morabito, Filippo [1 ]
Magdalena Rodriguez, M. [2 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, E-28040 Madrid, Spain
[2] Univ Granada, Dept Geometria & Topol, E-18071 Granada, Spain
关键词
saddle tower; k-noid; conjugation; Jenkins-Serrin problem; SURFACES; IMMERSIONS;
D O I
10.1017/S1474748011000107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given k >= 2, we construct a (2k - 2)-parameter family of properly embedded minimal surfaces in H-2 x R invariant by a vertical translation T, called saddle towers, which have total intrinsic curvature 4 pi(1 - k), genus zero and 2k vertical Scherk-type ends in the quotient by T. Each of those examples is obtained from the conjugate graph of a Jenkins-Serrin graph over a convex polygonal domain with 2k edges of the same (finite) length. As limits of saddle towers, we obtain properly embedded minimal surfaces, called minimal k-noids, which are symmetric with respect to a horizontal slice (in fact they are vertical bi-graphs) and have total intrinsic curvature 4 pi(1 - k), genus zero and k vertical planar ends.
引用
收藏
页码:333 / 349
页数:17
相关论文
共 16 条
[1]   Construction of harmonic diffeomorphisms and minimal graphs [J].
Collin, Pascal ;
Rosenberg, Harold .
ANNALS OF MATHEMATICS, 2010, 172 (03) :1879-1906
[2]   ISOMETRIC IMMERSIONS INTO Sn x R AND Hn x R AND APPLICATIONS TO MINIMAL SURFACES [J].
Daniel, Benoit .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (12) :6255-6282
[3]   Associate and conjugate minimal immersions in M x R [J].
Hauswirth, Laurent ;
Earp, Ricardo Sa ;
Toubiana, Eric .
TOHOKU MATHEMATICAL JOURNAL, 2008, 60 (02) :267-286
[4]  
JENKINS H, 1966, ARCH RATION MECH AN, V21, P321
[5]   EMBEDDED MINIMAL-SURFACES DERIVED FROM SCHERK EXAMPLES [J].
KARCHER, H .
MANUSCRIPTA MATHEMATICA, 1988, 62 (01) :83-114
[6]  
Karcher H., 2005, CLAY MATH P, V2, P137
[7]  
Karcher H., 1989, Surveys in Geometry, P1
[8]  
Mazet L., P LOND MATH IN PRESS
[9]   Saddle towers with infinitely many ends [J].
Mazet, Laurent ;
Rodriguez, M. Magdalena ;
Traizet, Martin .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (06) :2821-2838
[10]  
MEEKS WH, PROPERLY EMBEDDED MI