Clique number and distance spectral radii of graphs

被引:0
|
作者
Zhai, Mingqing [1 ,2 ]
Yu, Guanglong [3 ]
Shu, Jinlong [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Nanjing 210046, Jiangsu, Peoples R China
[2] Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
[3] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
关键词
Graph; Clique number; Distance spectral radius; LARGEST EIGENVALUE; MATRIX;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The distance spectral radius of a connected graph G, denoted by rho(G), is the maximal eigenvalue of the distance matrix of G. In this paper we find a sharp lower bound as well as a sharp upper bound of rho(G) in terms of omega(G), the clique number of G. Furthermore, both extremal graphs are unique decided.
引用
收藏
页码:385 / 392
页数:8
相关论文
共 50 条
  • [21] GRAPHS WHOSE CIRCULAR CLIQUE NUMBER EQUAL THE CLIQUE NUMBER
    XU Baogang ZHOU Xinghe School of Mathematics & Computer Science
    Journal of Systems Science & Complexity, 2005, (03) : 340 - 346
  • [22] Lower Bounds of Distance Laplacian Spectral Radii of n-Vertex Graphs in Terms of Fractional Matching Number
    Jin Yan
    Yan Liu
    Xue-Li Su
    Journal of the Operations Research Society of China, 2023, 11 : 189 - 196
  • [23] Lower Bounds of Distance Laplacian Spectral Radii of n-Vertex Graphs in Terms of Fractional Matching Number
    Yan, Jin
    Liu, Yan
    Su, Xue-Li
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2023, 11 (01) : 189 - 196
  • [24] The smallest signless Laplacian spectral radius of graphs with a given clique number
    Zhang, Jing-Ming
    Huang, Ting-Zhu
    Guo, Ji-Ming
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (09) : 2562 - 2576
  • [25] Spectral Pseudorandomness and the Road to Improved Clique Number Bounds for Paley Graphs
    Kunisky, Dmitriy
    EXPERIMENTAL MATHEMATICS, 2024,
  • [26] New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory
    Bulo, Samuel Rota
    Pelillo, Marcell
    LEARNING AND INTELLIGENT OPTIMIZATION, 2009, 5851 : 45 - 58
  • [27] THE MINIMUM SPECTRAL RADIUS OF SIGNLESS LAPLACIAN OF GRAPHS WITH A GIVEN CLIQUE NUMBER
    Su, Li
    Li, Hong-Hai
    Zhang, Jing
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (01) : 95 - 102
  • [28] Bounds on the distance signless Laplacian spectral radius in terms of clique number
    Lin, Huiqiu
    Lu, Xiwen
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (09): : 1750 - 1759
  • [29] Laplacian and signless Laplacian spectral radii of graphs with fixed domination number
    Xing, Rundan
    Zhou, Bo
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (04) : 476 - 480
  • [30] The (distance) signless Laplacian spectral radii of digraphs with given dichromatic number
    Li, Jinxi
    You, Lihua
    ARS COMBINATORIA, 2017, 132 : 257 - 267