A new generalized shift-splitting method for nonsymmetric saddle point problems

被引:2
|
作者
Wei, Tao [1 ]
Zhang, Li-Tao [2 ,3 ,4 ]
机构
[1] Henan Univ Engn, Sch Software, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou, Henan, Peoples R China
[3] Collaborat Innovat Ctr Aviat Econ Dev Henan Prov, Zhengzhou, Henan, Peoples R China
[4] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Shift-splitting iteration; nonsymmetric saddle point problems; convergence; Krylov subspace methods; eigenvalue; SYMMETRIC SOR METHOD; ITERATION METHODS; UZAWA METHODS; INEXACT; PRECONDITIONERS; CONVERGENCE;
D O I
10.1177/16878132221119451
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, Huang and Huang [Journal of Computational and Applied Mathematics, 328 (2018) 381-399] proposed a modified generalized shift-splitting preconditioned (denoted by MGSSP) method for solving large sparse saddle point problems, and gave the corresponding theoretical analysis and numerical experiments. In this paper, based on the modified generalized shift-splitting preconditioned (MGSSP) method, we generalize the MGSSP algorithms and further present the new generalized shift-splitting preconditioned (NGSSP) method for nonsymmetric saddle point problems. Moreover, by similar theoretical analysis, we analyze the convergence conditions of the corresponding matrix splitting iteration methods of the NGSSP preconditioned saddle point matrices. In final, one example is provided to confirm the effectiveness. MSC: 65F10, 65F15, 65F50
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The generalized double shift-splitting preconditioner for nonsymmetric generalized saddle point problems from the steady Navier-Stokes equations
    Fan, Hong-Tao
    Zhu, Xin-Yun
    Zheng, Bing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03) : 3256 - 3266
  • [32] A shift-splitting preconditioner for asymmetric saddle point problems
    Shi-Liang Wu
    Davod Khojasteh Salkuyeh
    Computational and Applied Mathematics, 2020, 39
  • [33] A shift-splitting preconditioner for asymmetric saddle point problems
    Wu, Shi-Liang
    Salkuyeh, Davod Khojasteh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04)
  • [34] On quasi shift-splitting iteration method for a class of saddle point problems
    Gao, Wen-Li
    Li, Xi-An
    Lu, Xin-Ming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) : 2912 - 2923
  • [35] The improvements of the generalized shift-splitting preconditioners for non-singular and singular saddle point problems
    Huang, Zhengge
    Wang, Ligong
    Xu, Zhong
    Cui, Jingjing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (04) : 797 - 820
  • [36] Extensive generalized shift-splitting preconditioner for 3? 3 block saddle point problems
    Yin, Lina
    Huang, Yunqing
    Tang, Qili
    APPLIED MATHEMATICS LETTERS, 2023, 143
  • [37] Spectral analysis of the generalized shift-splitting preconditioned saddle point problem
    Ren, Zhi-Ru
    Cao, Yang
    Niu, Qiang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 : 539 - 550
  • [38] A class of new extended generalized shift-splitting preconditioners for 3x3 block saddle point problems
    Tang, Qili
    Wang, Zhijia
    Yin, Lina
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2569 - 2585
  • [39] Eigenvalue bounds of the shift-splitting preconditioned singular nonsymmetric saddle-point matrices
    Quan Shi
    Qin-Qin Shen
    Lin-Quan Yao
    Journal of Inequalities and Applications, 2016
  • [40] Eigenvalue bounds of the shift-splitting preconditioned singular nonsymmetric saddle-point matrices
    Shi, Quan
    Shen, Qin-Qin
    Yao, Lin-Quan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,