A new generalized shift-splitting method for nonsymmetric saddle point problems

被引:2
|
作者
Wei, Tao [1 ]
Zhang, Li-Tao [2 ,3 ,4 ]
机构
[1] Henan Univ Engn, Sch Software, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou, Henan, Peoples R China
[3] Collaborat Innovat Ctr Aviat Econ Dev Henan Prov, Zhengzhou, Henan, Peoples R China
[4] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Shift-splitting iteration; nonsymmetric saddle point problems; convergence; Krylov subspace methods; eigenvalue; SYMMETRIC SOR METHOD; ITERATION METHODS; UZAWA METHODS; INEXACT; PRECONDITIONERS; CONVERGENCE;
D O I
10.1177/16878132221119451
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, Huang and Huang [Journal of Computational and Applied Mathematics, 328 (2018) 381-399] proposed a modified generalized shift-splitting preconditioned (denoted by MGSSP) method for solving large sparse saddle point problems, and gave the corresponding theoretical analysis and numerical experiments. In this paper, based on the modified generalized shift-splitting preconditioned (MGSSP) method, we generalize the MGSSP algorithms and further present the new generalized shift-splitting preconditioned (NGSSP) method for nonsymmetric saddle point problems. Moreover, by similar theoretical analysis, we analyze the convergence conditions of the corresponding matrix splitting iteration methods of the NGSSP preconditioned saddle point matrices. In final, one example is provided to confirm the effectiveness. MSC: 65F10, 65F15, 65F50
引用
收藏
页数:11
相关论文
共 50 条
  • [21] On semi-convergence of the generalized shift-splitting iteration method for singular nonsymmetric saddle point problems
    Cao, Yang
    Miao, Shu-Xin
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (07) : 1503 - 1511
  • [22] Generalized fast shift-splitting preconditioner for nonsymmetric saddle-point problems
    Jian-Hua Zhang
    Xiao-Ping Chen
    Jing Zhao
    Computational and Applied Mathematics, 2019, 38
  • [23] A modification of the generalized shift-splitting method for singular saddle point problems
    Salkuyeh, Davod Khojasteh
    Rahimian, Maryam
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 2940 - 2949
  • [24] The modified shift-splitting preconditioners for nonsymmetric saddle-point problems
    Zhou, Sheng-Wei
    Yang, Ai-Li
    Dou, Yan
    Wu, Yu-Jiang
    APPLIED MATHEMATICS LETTERS, 2016, 59 : 109 - 114
  • [25] On preconditioned generalized shift-splitting iteration methods for saddle point problems
    Cao, Yang
    Miao, Shu-Xin
    Ren, Zhi-Ru
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (04) : 859 - 872
  • [26] On the generalized shift-splitting preconditioner for saddle point problems
    Salkuyeh, Davod Khojasteh
    Masoudi, Mohsen
    Hezari, Davod
    APPLIED MATHEMATICS LETTERS, 2015, 48 : 55 - 61
  • [27] A PARAMETERIZED SHIFT-SPLITTING PRECONDITIONER FOR SADDLE POINT PROBLEMS
    Zhang, Litao
    Zhang, Xiaojing
    Zhao, Jianfeng
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2877 - 2889
  • [28] A modified parameterized shift-splitting preconditioner for saddle point problems
    Bo Wu
    Xing-Bao Gao
    Computational and Applied Mathematics, 2021, 40
  • [29] The generalized double shift-splitting preconditioner for nonsymmetric generalized saddle point problems from the steady Navier–Stokes equations
    Hong-Tao Fan
    Xin-Yun Zhu
    Bing Zheng
    Computational and Applied Mathematics, 2018, 37 : 3256 - 3266
  • [30] Shift-splitting preconditioners for saddle point problems
    Cao, Yang
    Du, Jun
    Niu, Qiang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 272 : 239 - 250