A new generalized shift-splitting method for nonsymmetric saddle point problems

被引:2
|
作者
Wei, Tao [1 ]
Zhang, Li-Tao [2 ,3 ,4 ]
机构
[1] Henan Univ Engn, Sch Software, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou, Henan, Peoples R China
[3] Collaborat Innovat Ctr Aviat Econ Dev Henan Prov, Zhengzhou, Henan, Peoples R China
[4] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Shift-splitting iteration; nonsymmetric saddle point problems; convergence; Krylov subspace methods; eigenvalue; SYMMETRIC SOR METHOD; ITERATION METHODS; UZAWA METHODS; INEXACT; PRECONDITIONERS; CONVERGENCE;
D O I
10.1177/16878132221119451
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, Huang and Huang [Journal of Computational and Applied Mathematics, 328 (2018) 381-399] proposed a modified generalized shift-splitting preconditioned (denoted by MGSSP) method for solving large sparse saddle point problems, and gave the corresponding theoretical analysis and numerical experiments. In this paper, based on the modified generalized shift-splitting preconditioned (MGSSP) method, we generalize the MGSSP algorithms and further present the new generalized shift-splitting preconditioned (NGSSP) method for nonsymmetric saddle point problems. Moreover, by similar theoretical analysis, we analyze the convergence conditions of the corresponding matrix splitting iteration methods of the NGSSP preconditioned saddle point matrices. In final, one example is provided to confirm the effectiveness. MSC: 65F10, 65F15, 65F50
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Fast Shift-Splitting Iteration Method for Nonsymmetric Saddle Point Problems
    Dou, Quan-Yu
    Yin, Jun-Feng
    Liao, Ze-Yu
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (01) : 172 - 191
  • [2] A modified generalized shift-splitting method for nonsymmetric saddle point problems
    Huang, Zhuo-Hong
    Huang, Ting-Zhu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 328 : 381 - 399
  • [3] A class of generalized shift-splitting preconditioners for nonsymmetric saddle point problems
    Cao, Yang
    Li, Sen
    Yao, Lin-Quan
    APPLIED MATHEMATICS LETTERS, 2015, 49 : 20 - 27
  • [4] A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems
    Huang, Zheng-Ge
    Wang, Li-Gong
    Xu, Zhong
    Cui, Jing-Jing
    NUMERICAL ALGORITHMS, 2018, 78 (01) : 297 - 331
  • [5] Parameterized generalized shift-splitting preconditioners for nonsymmetric saddle point problems
    Huang, Zheng-Ge
    Wang, Li-Gong
    Xu, Zhong
    Cui, Jing-Jing
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (02) : 349 - 373
  • [6] The generalized modified shift-splitting preconditioners for nonsymmetric saddle point problems
    Huang, Zheng-Ge
    Wang, Li-Gong
    Xu, Zhong
    Cui, Jing-Jing
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 299 : 95 - 118
  • [7] A modified shift-splitting method for nonsymmetric saddle point problems
    Huang, Zhuo-Hong
    Su, Hong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 317 : 535 - 546
  • [8] A parameterized shift-splitting preconditioner for saddle point problems
    Zhang, Li-Tao
    Li, Chao-Qian
    Li, Yao-Tang
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (02) : 1021 - 1033
  • [9] A modified generalized shift-splitting preconditioner for nonsymmetric saddle point problems
    Zheng-Ge Huang
    Li-Gong Wang
    Zhong Xu
    Jing-Jing Cui
    Numerical Algorithms, 2018, 78 : 297 - 331
  • [10] THE MODIFIED DOUBLE SHIFT-SPLITTING PRECONDITIONER FOR NONSYMMETRIC GENERALIZED SADDLE POINT PROBLEMS FROM THE TIME-HARMONIC MAXWELL EQUATIONS
    Zhang, Litao
    Zhao, Haochen
    Zhu, Guangxu
    Zhang, Xiaojing
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (03): : 1520 - 1535