Automatic detection of multiple types of pneumonia: Open dataset and a multi-scale attention network

被引:16
作者
Wong, Pak Kin [1 ]
Yan, Tao [1 ,2 ]
Wang, Huaqiao
Chan, In Neng [1 ,3 ]
Wang, Jiangtao [4 ]
Li, Yang [3 ]
Ren, Hao [4 ]
Wong, Chi Hong [5 ]
机构
[1] Univ Macau, Dept Electromech Engn, Taipa 999078, Macau, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Mech Engn, Xiangyang 441053, Peoples R China
[3] Hubei Univ Med, Xiangyang Peoples Hosp 1, Xiangyang 441000, Peoples R China
[4] Hubei Univ Arts & Sci, Affiliated Hosp, Xiangyang Cent Hosp, Xiangyang 441021, Peoples R China
[5] Macau Univ Sci & Technol, Fac Med, Taipa 999078, Macau, Peoples R China
关键词
COVID-19; Pneumonia identification; Multi-scale convolution neural network; Attention mechanism; Chest computed tomography; DIAGNOSIS; COVID-19; CT; CLASSIFICATION; SYSTEM;
D O I
10.1016/j.bspc.2021.103415
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The quick and precise identification of COVID-19 pneumonia, non-COVID-19 viral pneumonia, bacterial pneu-monia, mycoplasma pneumonia, and normal lung on chest CT images play a crucial role in timely quarantine and medical treatment. However, manual identification is subject to potential misinterpretations and time-consumption issues owing the visual similarities of pneumonia lesions. In this study, we propose a novel multi-scale attention network (MSANet) based on a bag of advanced deep learning techniques for the automatic classification of COVID-19 and multiple types of pneumonia. The proposed method can automatically pay attention to discriminative information and multi-scale features of pneumonia lesions for better classification. The experimental results show that the proposed MSANet can achieve an overall precision of 97.31%, recall of 96.18%, F1-score of 96.71%, accuracy of 97.46%, and macro-average area under the receiver operating char-acteristic curve (AUC) of 0.9981 to distinguish between multiple classes of pneumonia. These promising results indicate that the proposed method can significantly assist physicians and radiologists in medical diagnosis. The dataset is publicly available at https://doi.org/10.17632/rf8x3wp6ss.1.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] AMFF-Net: An attention-based multi-scale feature fusion network for allergic pollen detection
    Li, Jianqiang
    Wang, Quanzeng
    Xiong, Chengyao
    Zhao, Linna
    Cheng, Wenxiu
    Xu, Xi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 235
  • [22] Skin Lesion Segmentation Based on Multi-Scale Attention Convolutional Neural Network
    Jiang, Yun
    Cao, Simin
    Tao, Shengxin
    Zhang, Hai
    IEEE ACCESS, 2020, 8 : 122811 - 122825
  • [23] Incorporating Triple Attention and Multi-scale Pyramid Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (03) : 387 - 397
  • [24] A Multi-Feature Fusion and Attention Network for Multi-Scale Object Detection in Remote Sensing Images
    Cheng, Yong
    Wang, Wei
    Zhang, Wenjie
    Yang, Ling
    Wang, Jun
    Ni, Huan
    Guan, Tingzhao
    He, Jiaxin
    Gu, Yakang
    Tran, Ngoc Nguyen
    REMOTE SENSING, 2023, 15 (08)
  • [25] MA-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation
    Fan, Tongle
    Wang, Guanglei
    Li, Yan
    Wang, Hongrui
    IEEE ACCESS, 2020, 8 (08): : 179656 - 179665
  • [26] Detection and Localization of Myocardial Infarction Based on Multi-Scale ResNet and Attention Mechanism
    Cao, Yang
    Liu, Wenyan
    Zhang, Shuang
    Xu, Lisheng
    Zhu, Baofeng
    Cui, Huiying
    Geng, Ning
    Han, Hongguang
    Greenwald, Stephen E.
    FRONTIERS IN PHYSIOLOGY, 2022, 13
  • [27] MFANet: Multi-scale feature fusion network with attention mechanism
    Wang, Gaihua
    Gan, Xin
    Cao, Qingcheng
    Zhai, Qianyu
    VISUAL COMPUTER, 2023, 39 (07) : 2969 - 2980
  • [28] MFANet: Multi-scale feature fusion network with attention mechanism
    Gaihua Wang
    Xin Gan
    Qingcheng Cao
    Qianyu Zhai
    The Visual Computer, 2023, 39 : 2969 - 2980
  • [29] A multi-scale fusion and dual attention network for crowd counting
    De Zhang
    Yiting Wang
    Xiaoping Zhou
    Liangliang Su
    Multimedia Tools and Applications, 2025, 84 (13) : 11269 - 11294
  • [30] A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation
    Jiang, Yun
    Yao, Huixia
    Wu, Chao
    Liu, Wenhuan
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 16