Automatic detection of multiple types of pneumonia: Open dataset and a multi-scale attention network

被引:19
作者
Wong, Pak Kin [1 ]
Yan, Tao [1 ,2 ]
Wang, Huaqiao
Chan, In Neng [1 ,3 ]
Wang, Jiangtao [4 ]
Li, Yang [3 ]
Ren, Hao [4 ]
Wong, Chi Hong [5 ]
机构
[1] Univ Macau, Dept Electromech Engn, Taipa 999078, Macau, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Mech Engn, Xiangyang 441053, Peoples R China
[3] Hubei Univ Med, Xiangyang Peoples Hosp 1, Xiangyang 441000, Peoples R China
[4] Hubei Univ Arts & Sci, Affiliated Hosp, Xiangyang Cent Hosp, Xiangyang 441021, Peoples R China
[5] Macau Univ Sci & Technol, Fac Med, Taipa 999078, Macau, Peoples R China
关键词
COVID-19; Pneumonia identification; Multi-scale convolution neural network; Attention mechanism; Chest computed tomography; DIAGNOSIS; COVID-19; CT; CLASSIFICATION; SYSTEM;
D O I
10.1016/j.bspc.2021.103415
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The quick and precise identification of COVID-19 pneumonia, non-COVID-19 viral pneumonia, bacterial pneu-monia, mycoplasma pneumonia, and normal lung on chest CT images play a crucial role in timely quarantine and medical treatment. However, manual identification is subject to potential misinterpretations and time-consumption issues owing the visual similarities of pneumonia lesions. In this study, we propose a novel multi-scale attention network (MSANet) based on a bag of advanced deep learning techniques for the automatic classification of COVID-19 and multiple types of pneumonia. The proposed method can automatically pay attention to discriminative information and multi-scale features of pneumonia lesions for better classification. The experimental results show that the proposed MSANet can achieve an overall precision of 97.31%, recall of 96.18%, F1-score of 96.71%, accuracy of 97.46%, and macro-average area under the receiver operating char-acteristic curve (AUC) of 0.9981 to distinguish between multiple classes of pneumonia. These promising results indicate that the proposed method can significantly assist physicians and radiologists in medical diagnosis. The dataset is publicly available at https://doi.org/10.17632/rf8x3wp6ss.1.
引用
收藏
页数:11
相关论文
共 53 条
[1]   Logistic Regression Confined by Cardinality-Constrained Sample and Feature Selection [J].
Adeli, Ehsan ;
Li, Xiaorui ;
Kwon, Dongjin ;
Zhang, Yong ;
Pohl, Kilian M. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) :1713-1728
[2]  
Adelson E.H., 1984, RCA Eng., V29, P33
[3]   Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks [J].
Ardakani, Ali Abbasian ;
Kanafi, Alireza Rajabzadeh ;
Acharya, U. Rajendra ;
Khadem, Nazanin ;
Mohammadi, Afshin .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 121 (121)
[4]   Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT [J].
Bai, Harrison X. ;
Wang, Robin ;
Xiong, Zeng ;
Hsieh, Ben ;
Chang, Ken ;
Halsey, Kasey ;
Thi My Linh Tran ;
Choi, Ji Whae ;
Wang, Dong-Cui ;
Shi, Lin-Bo ;
Mei, Ji ;
Jiang, Xiao-Long ;
Pan, Ian ;
Zeng, Qiu-Hua ;
Hu, Ping-Feng ;
Li, Yi-Hui ;
Fu, Fei-Xian ;
Huang, Raymond Y. ;
Sebro, Ronnie ;
Yu, Qi-Zhi ;
Atalay, Michael K. ;
Liao, Wei-Hua .
RADIOLOGY, 2020, 296 (03) :E156-E165
[5]   COMMUNITY-ACQUIRED PNEUMONIA [J].
BARTLETT, JG ;
MUNDY, LM .
NEW ENGLAND JOURNAL OF MEDICINE, 1995, 333 (24) :1618-1624
[6]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[7]  
CHOLLET F, 2017, PROC CVPR IEEE, P1800, DOI [DOI 10.1109/CVPR.2017.195, 10.1109/CVPR.2017.195]
[8]   Early Chest Computed Tomography Scan to Assist Diagnosis and Guide Treatment Decision for Suspected Community-acquired Pneumonia [J].
Claessens, Yann-Erick ;
Debray, Marie-Pierre ;
Tubach, Florence ;
Brun, Anne-Laure ;
Rammaert, Blandine ;
Hausfater, Pierre ;
Naccache, Jean-Marc ;
Ray, Patrick ;
Choquet, Christophe ;
Carette, Marie-France ;
Mayaud, Charles ;
Leport, Catherine ;
Duval, Xavier .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2015, 192 (08) :974-982
[9]   Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images [J].
Das, Vineeta ;
Dandapat, Samarendra ;
Bora, Prabin Kumar .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 54
[10]   Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR [J].
Fang, Yicheng ;
Zhang, Huangqi ;
Xie, Jicheng ;
Lin, Minjie ;
Ying, Lingjun ;
Pang, Peipei ;
Ji, Wenbin .
RADIOLOGY, 2020, 296 (02) :E115-E117