Existence and multiplicity results for the nonlinear Schrodinger-Poisson systems

被引:36
|
作者
Yang, Ming-Hai [1 ]
Han, Zhi-Qing [2 ]
机构
[1] Xinyang Normal Univ, Dept Math, Xinyang 464000, Peoples R China
[2] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
关键词
Schrodinger-Poisson system; Mountain pass theorem; Fountain theorem; Variational methods; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; BOUND-STATES; EQUATIONS; MAXWELL; THEOREMS;
D O I
10.1016/j.nonrwa.2011.07.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity results for the nonlinear Schrodinger-Poisson systems {-Delta u + V(x)u K(x)phi(x)u = f(x, u), in R-3 -Delta phi = K (x)u(2), in R-3. (*) Under certain assumptions on V. K and f, we obtain at least one nontrivial solution for (*) without assuming the Ambrosetti and Rabinowitz condition by using the mountain pass theorem, and obtain infinitely many high energy solutions when f (x,.) is odd by using the fountain theorem. (C) 2011 Published by Elsevier Ltd
引用
收藏
页码:1093 / 1101
页数:9
相关论文
共 50 条
  • [1] Existence and multiplicity results for some Schrodinger-Poisson system with critical growth
    Li, Na
    He, Xiaoming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 488 (02)
  • [2] MULTIPLICITY RESULTS FOR NONLINEAR SCHRODINGER-POISSON SYSTEMS WITH SUBCRITICAL OR CRITICAL GROWTH
    Guo, Shangjiang
    Liu, Zhisu
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 247 - 262
  • [3] Existence and multiplicity of solutions of Schrodinger-Poisson systems with radial potentials
    Li, Anran
    Su, Jiabao
    Zhao, Leiga
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (02) : 319 - 332
  • [4] Existence and multiplicity results for nonlinear Schrodinger-Poisson equation with general potential
    Shan, Yuan
    FRONTIERS OF MATHEMATICS IN CHINA, 2020, 15 (06) : 1189 - 1200
  • [5] Existence and multiplicity of nontrivial solutions for Schrodinger-Poisson systems on bounded domains
    Almuaalemi, Belal
    Chen, Haibo
    Khoutir, Sofiane
    BOUNDARY VALUE PROBLEMS, 2018,
  • [6] Existence of solutions to Schrodinger-Poisson systems with critical and supercritical nonlinear terms
    Li, Yuhua
    Gu, Hua
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (07) : 2279 - 2286
  • [7] Multiplicity of semiclassical states for Schrodinger-Poisson systems with critical frequency
    Zhang, Hui
    Xu, Junxiang
    Zhang, Fubao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [8] Existence of multiple positive solutions for Schrodinger-Poisson systems with critical growth
    Wang, Jun
    Tian, Lixin
    Xu, Junxiang
    Zhang, Fubao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2441 - 2471
  • [9] Existence of ground state solutions for the Schrodinger-Poisson systems
    Liu, Zhisu
    Guo, Shangjiang
    Zhang, Ziheng
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 244 : 312 - 323
  • [10] On the nonlinear Schrodinger-Poisson systems with sign-changing potential
    Sun, Juntao
    Wu, Tsung-fang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1649 - 1669