Normality of the Orlicz-Sobolev Classes

被引:0
作者
Ryazanov, V. I. [1 ]
Salimov, R. R. [2 ]
Sevost'yanov, E. A. [3 ]
机构
[1] Ukrainian Natl Acad Sci, Inst Appl Math & Mech, Slavyansk, Ukraine
[2] Ukrainian Natl Acad Sci, Inst Math, Kiev, Ukraine
[3] Franko Zhytomyr State Univ, Zhytomyr, Ukraine
关键词
ELLIPTIC-EQUATIONS;
D O I
10.1007/s11253-016-1212-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a series of new criteria of equicontinuity and, hence, normality of the mappings of Orlicz-Sobolev classes in terms of inner dilatations.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 30 条
[21]   Mountain pass type periodic solutions for Euler-Lagrange equations in anisotropic Orlicz-Sobolev space [J].
Chmara, M. ;
Maksymiuk, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (01) :584-598
[22]   Sign-changing solution for a generalized Kirchhoff problem in the fractional Orlicz-Sobolev space with nonsmooth nonlinearity [J].
Missaoui, Hlel ;
Bahrouni, Anouar .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (11)
[23]   Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz-Sobolev space setting [J].
Kristaly, Alexandru ;
Mihailescu, Mihai ;
Radulescu, Vicentiu .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2009, 139 :367-379
[24]   Existence of least energy nodal solution with two nodal domains for a generalized Kirchhoff problem in an Orlicz-Sobolev space [J].
Figueiredo, Giovany M. ;
Santos, Jefferson A. .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (04) :583-603
[25]   EXISTENCE OF POSITIVE SOLUTION FOR A CLASS OF QUASILINEAR SCHRO<spacing diaeresis>DINGER EQUATIONS WITH POTENTIAL VANISHING AT INFINITY ON NONREFLEXIVE ORLICZ-SOBOLEV SPACES [J].
DA Silva, Lucas ;
Souto, Marco a. s. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 64 (01) :201-241
[26]   Multiplicity and concentration behavior of positive solutions for a quasilinear problem in Orlicz-Sobolev spaces without Ambrosetti-Rabinowitz condition via penalization method [J].
Ait-Mahiout, K. .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2020, 6 (02) :473-506
[27]   Inhomogeneous torsional creep problems in anisotropic Orlicz Sobolev spaces [J].
Mihailescu, Mihai ;
Perez-Llanos, Mayte .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
[28]   Local boundedness of weak solutions to an inclusion problem in Musielak-Orlicz-Sobolev spaces [J].
Dong, Ge ;
Fang, Xiaochun .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
[29]   Multiple solutions for an inclusion quasilinear problem with nonhomogeneous boundary condition through Orlicz Sobolev spaces [J].
Nemer, Rodrigo C. M. ;
Santos, Jefferson A. .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (03)
[30]   On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations [J].
Bogachev, V. I. ;
Popova, S. N. ;
Shaposhnikov, S. V. .
DOKLADY MATHEMATICS, 2018, 98 (02) :498-501