The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence

被引:58
作者
Mayorga, ME [1 ]
Gold, SE [1 ]
机构
[1] Univ Georgia, Dept Plant Pathol, Athens, GA 30602 USA
关键词
D O I
10.1046/j.1365-2958.2001.02606.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Basidiomycete fungus Ustilago maydis causes corn smut disease and alternates between a budding haploid saprophyte and a filamentous dikaryotic pathogen. Previous work demonstrated that haploid adenylate cyclase (uac1) mutants display a constitutively filamentous phenotype. Suppressor mutants of a uac1 disruption strain, named ubc for Ustilago bypass of cyclase, no longer require cAMP for the budding morphology. The ubc2 gene was isolated by complementation and is required for filamentous growth. The deduced amino acid sequence encoded by ubc2 shows localized homology to Sterile Alpha Motif (SAM), Ras Association (RA) and Src homology 3 (SH3) protein-protein interaction domains. A K78E missense mutation within the SAM domain, revealed a genetic interaction between ubc2 and ubc4, a pheromone-responsive MAP kinase kinase kinase, This indicates involvement of ubc2 in the pheromone-responsive MAP kinase cascade and ubc2 is required for pheromone-responsive morphogenesis. The ubc2 gene is a critical virulence factor. Thus, ubc2 encodes a putative novel adaptor protein that may act directly upstream of the pheromone-responsive MAP kinase cascade in U. maydis.
引用
收藏
页码:1365 / 1379
页数:15
相关论文
共 60 条
[1]   RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans [J].
Alspaugh, JA ;
Cavallo, LM ;
Perfect, JR ;
Heitman, J .
MOLECULAR MICROBIOLOGY, 2000, 36 (02) :352-365
[2]   Signal transduction pathways regulating differentiation and pathogenicity of Cryptococcus neoformans [J].
Alspaugh, JA ;
Perfect, JR ;
Heitman, J .
FUNGAL GENETICS AND BIOLOGY, 1998, 25 (01) :1-14
[3]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[4]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[5]   The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth [J].
Andrews, DL ;
Egan, JD ;
Mayorga, ME ;
Gold, SE .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2000, 13 (07) :781-786
[6]  
Ausubel F. M., 1999, SHORT PROTOCOLS MOL
[7]   IDENTIFICATION OF FUZ7, A USTILAGO-MAYDIS MEK/MAPKK HOMOLOG REQUIRED FOR A-LOCUS-DEPENDENT AND A-LOCUS-INDEPENDENT STEPS IN THE FUNGAL LIFE-CYCLE [J].
BANUETT, F ;
HERSKOWITZ, I .
GENES & DEVELOPMENT, 1994, 8 (12) :1367-1378
[8]   Signalling in the yeasts: An informational cascade with links to the filamentous fungi [J].
Banuett, F .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) :249-+
[9]   Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize [J].
Banuett, F .
ANNUAL REVIEW OF GENETICS, 1995, 29 :179-208
[10]   DIFFERENT A-ALLELES OF USTILAGO-MAYDIS ARE NECESSARY FOR MAINTENANCE OF FILAMENTOUS GROWTH BUT NOT FOR MEIOSIS [J].
BANUETT, F ;
HERSKOWITZ, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (15) :5878-5882