Generalized Characters for Glider Representations of Groups

被引:0
作者
Caenepeel, Frederik [1 ,2 ]
Van Oystaeyen, Fred [1 ]
机构
[1] Univ Antwerp, Dept Math, Antwerp, Belgium
[2] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
关键词
Groups; Glider representations; Character theory; GROUP-ALGEBRA;
D O I
10.1007/s10468-018-09850-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Glider representations can be defined for a finite algebra filtration FKG determined by a chain of subgroups 1 subset of G(1) subset of horizontal ellipsis subset of G(d) = G. In this paper we develop the generalized character theory for such glider representations. We give the generalization of Artin's theorem and define a generalized inproduct. For finite abelian groups G with chain 1 subset of G, we explicitly calculate the generalized character ring and compute its semisimple quotient. The papers ends with a discussion of the quaternion group as a first non-abelian example.
引用
收藏
页码:303 / 326
页数:24
相关论文
共 8 条
  • [1] Glider Representations of Group Algebra Filtrations of Nilpotent Groups
    Caenepeel, Frederik
    Van Oystaeyen, Fred
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 529 - 550
  • [2] Clifford Theory for Glider Representations
    Caenepeel, Frederik
    Van Oystaeyen, Fred
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2016, 19 (06) : 1477 - 1493
  • [3] El Baroudy M, 2000, COMMUN ALGEBRA, V28, P321
  • [4] James G., 2001, Representations and Characters of Groups, DOI 10.1017/CBO9780511814532
  • [5] CENTRAL IDEMPOTENTS IN THE RATIONAL GROUP ALGEBRA OF A FINITE NILPOTENT GROUP
    Jespers, Eric
    Leal, Guilherme
    Paques, Antonio
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2003, 2 (01) : 57 - 62
  • [6] AN INTRODUCTION OF FRAGMENTED STRUCTURES OVER FILTERED RINGS
    NAWAL, S
    VANOYSTAEYEN, F
    [J]. COMMUNICATIONS IN ALGEBRA, 1995, 23 (03) : 975 - 993
  • [7] Okniski J., 1998, SEMIGROUP ALGEBRAS
  • [8] Serre J P, 1977, GRADUATE TEXTS MATH