Enhanced FPGA realization of the fractional-order derivative and application to a variable-order chaotic system

被引:23
作者
Tolba, Mohammed F. [1 ]
Saleh, Hani [1 ]
Mohammad, Baker [1 ]
Al-Qutayri, Mahmoud [1 ]
Elwakil, Ahmed S. [2 ,3 ,4 ]
Radwan, Ahmed G. [4 ,5 ]
机构
[1] Khalifa Univ, SoC Ctr, POB 127788, Abu Dhabi, U Arab Emirates
[2] Univ Sharjah, Dept Elect & Comp Engn, PO 27272, Sharjah, U Arab Emirates
[3] Univ Calgary, Dept Elect & Comp Engn, Calgary, AB, Canada
[4] Nile Univ, NISC Res Ctr, Cairo 12588, Egypt
[5] Cairo Univ, Dept Engn Math & Phys, Cairo, Egypt
关键词
Fractional-order systems; Chaotic oscillators; FPGA; IMPLEMENTATION; OSCILLATOR; EQUILIBRIA; POWER;
D O I
10.1007/s11071-019-05449-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The efficiency of the hardware implementations of fractional-order systems heavily relies on the efficiency of realizing the fractional-order derivative operator. In this work, a generic hardware implementation of the fractional-order derivative based on the Grunwald-Letnikov's approximation is proposed and verified on a field-programmable gate array. The main advantage of this particular realization is its flexibility in applications which enable easy real-time configuration of the values of the fractional orders, step sizes, and/or other system parameters without changing the hardware architecture. Different approximation techniques are used to improve the hardware performance including piece-wise linear/quadratic methods. As an application, a variable-order chaotic oscillator is implemented and verified using fractional orders that vary in time.
引用
收藏
页码:3143 / 3154
页数:12
相关论文
共 35 条
[1]   Some basic cryptographic requirements for chaos-based cryptosystems [J].
Alvarez, Gonzalo ;
Li, Shujun .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08) :2129-2151
[2]  
Assadi I., 2015, 2nd IET International Conference on Intelligent Signal Processing 2015 (ISP)
[3]   Generalized Hardware Post-processing Technique for Chaos-Based Pseudorandom Number Generators [J].
Barakat, Mohamed L. ;
Mansingka, Abhinav S. ;
Radwan, Ahmed G. ;
Salama, Khaled N. .
ETRI JOURNAL, 2013, 35 (03) :448-458
[4]   Low-Power ECG-Based Processor for Predicting Ventricular Arrhythmia [J].
Bayasi, Nourhan ;
Tekeste, Temesghen ;
Saleh, Hani ;
Mohammad, Baker ;
Khandoker, Ahsan ;
Ismail, Mohammed .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2016, 24 (05) :1962-1974
[5]   Highly accurate numerical schemes for multi-dimensional space variable-order fractional Schrodinger equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1100-1117
[6]   Integrated technology fractional order proportional-integral-derivative design [J].
Caponetto, Riccardo ;
Dongola, Giovanni ;
Maione, Guido ;
Pisano, A. .
JOURNAL OF VIBRATION AND CONTROL, 2014, 20 (07) :1066-1075
[7]   FPGA-based implementation of different families of fractional-order chaotic oscillators applying Grunwald-Letnikov method [J].
Dalia Pano-Azucena, Ana ;
Ovilla-Martinez, Brisbane ;
Tlelo-Cuautle, Esteban ;
Manuel Munoz-Pacheco, Jesus ;
Gerardo de la Fraga, Luis .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 72 :516-527
[8]   Computation of fractional order derivative and integral via power series expansion and signal modelling [J].
Ferdi, Youcef .
NONLINEAR DYNAMICS, 2006, 46 (1-2) :1-15
[9]   Dynamics and control of initialized fractional-order systems [J].
Hartley, TT ;
Lorenzo, CF .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :201-233
[10]  
Howard R.M., 2002, Principles of Random Signal Analysis and Low Noise Design, DOI [10.1002/0471439207.ch4, DOI 10.1002/0471439207.CH4]