Optimal residential community demand response scheduling in smart grid
被引:232
作者:
Nan, Sibo
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R ChinaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R China
Nan, Sibo
[1
]
Zhou, Ming
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R ChinaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R China
Zhou, Ming
[1
]
Li, Gengyin
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R ChinaNorth China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R China
Li, Gengyin
[1
]
机构:
[1] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, 2 Beinong Rd, Beijing 102206, Peoples R China
With the reformation of electric power market and the development of smart grid technology, smart residential community, a new residential demand side entity, tends to play an important role in demand response program. This paper presents a demand response scheduling model for the novel residential community incorporating the current circumstances and the future trends of demand response programs. In this paper, smart residential loads are firstly classified into different categories according to various demand response programs. Secondly, a complete scheduling scheme is modeled based on the dispatch of residential loads and distributed generation. The presented model reduces the cost of user's electricity consumption and decreases the peak load and peak-valley difference of residential load profile without bringing discomfort to the users, through which residential community can participate in demand response efficiently. Besides, this model can also provide support for the decision of electricity pricing strategies under power market development. (C) 2017 Elsevier Ltd. All rights reserved.
机构:
Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, ItalyUniv Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
Bianchini, Gianni
;
Casini, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, ItalyUniv Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
Casini, Marco
;
论文数: 引用数:
h-index:
机构:
Vicino, Antonio
;
Zarrilli, Donato
论文数: 0引用数: 0
h-index: 0
机构:
Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, ItalyUniv Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
机构:
Toshiba Res Europe Ltd, Telecommun Res Lab, Bristol BS1 4ND, Avon, EnglandToshiba Res Europe Ltd, Telecommun Res Lab, Bristol BS1 4ND, Avon, England
机构:
Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, ItalyUniv Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
Bianchini, Gianni
;
Casini, Marco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, ItalyUniv Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
Casini, Marco
;
论文数: 引用数:
h-index:
机构:
Vicino, Antonio
;
Zarrilli, Donato
论文数: 0引用数: 0
h-index: 0
机构:
Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, ItalyUniv Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
机构:
Toshiba Res Europe Ltd, Telecommun Res Lab, Bristol BS1 4ND, Avon, EnglandToshiba Res Europe Ltd, Telecommun Res Lab, Bristol BS1 4ND, Avon, England