Despite the popularity of the conveyor-belt model for portraying the airflow through midlatitude cyclones, questions arise as to the path of the cold conveyor belt, the lower-tropospheric airflow poleward of and underneath the warm front. Some studies, beginning with Carlson's analysis of the eastern U.S. cyclone of 5 December 1977, depict the cold conveyor belt moving westward, reaching the northwest quadrant of the storm, turning abruptly anticyclonically, rising to jet level, and departing the cyclone downstream (hereafter, the anticyclonic path). Other studies depict the cold conveyor belt reaching the northwest quadrant, turning cyclonically around the low center, and remaining in the lower troposphere (the cyclonic path). To clarify the path of the cold conveyor belt, the present study reexamines Carlson's analysis of the cold conveyor belt using an observational and mesoscale numerical modeling study of the 5 December 1977 cyclone. This reexamination raises several previously unappreciated and underappreciated issues. First, airflow in the vicinity of the warm front is shown to be composed of three different airstreams: air-parcel trajectories belonging to the ascending warm conveyor belt, air-parcel trajectories belonging to the cyclonic path of the cold conveyor belt that originate from the lower troposphere, and air-parcel trajectories belonging to the anticyclonic path of the cold conveyor belt that originate within the midtroposphere. Thus, the 5 December 1977 storm consists of a cold conveyor belt with both cyclonic and anticyclonic paths. Second, the anticyclonic path represents a transition between the warm conveyor belt and the cyclonic path of the cold conveyor belt, which widens with height. Third, the anticyclonic path of the cold conveyor belt is related to the depth of the closed circulation associated with the cyclone, which increases as the cyclone deepens and evolves. When the closed circulation is strong and deep, the anticyclonic path of the cold conveyor belt is not apparent and the cyclonic path of the cold conveyor belt dominates. Fourth, Carlson's analysis of the anticyclonic path of the cold conveyor belt was fortuitous because his selection of isentropic surface occurred within the transition zone, whereas, if a slightly colder isentropic surface were selected, the much broader lower-tropospheric cyclonic path would have been evident in his analysis instead. Finally, whereas Carlson concludes that the clouds and precipitation in the cloud head were associated with the anticyclonic path of the cold conveyor belt, results from the model simulation suggest that the clouds and precipitation originated within the ascending warm conveyor belt. As a consequence of the reexamination of the 5 December 1977 storm using air-parcel trajectories, this paper clarifies the structure of and terminology associated with the cold conveyor belt. It is speculated that cyclones with well-defined warm fronts will have a sharp demarcation between the cyclonic and anticyclonic paths of the cold conveyor belt. In contrast, cyclones with weaker warm fronts will have a broad transition zone between the two paths. Finally, the implications of this research for forecasting warm-frontal precipitation amount and type are discussed.