Extension of the mortar finite element method to a variational inequality modeling unilateral contact

被引:64
作者
Ben Belgacem, F [1 ]
Hild, P [1 ]
Laborde, P [1 ]
机构
[1] Univ Toulouse 3, Unite Mixte Rech, CNRS, INSAT,UMR 5640, F-31062 Toulouse 4, France
关键词
D O I
10.1142/S0218202599000154
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to extend the mortar finite element method to handle the unilateral contact model between two deformable bodies. The corresponding variational inequality is approximated using finite element meshes which do not fit on the contact zone. The mortar technique allows one to match these independent discretizations of each solid and takes into account the unilateral contact conditions in a convenient way. By using an adaptation of Falk's lemma and a bootstrap argument, we give an upper bound of the convergence rate similar to the one already obtained for compatible meshes.
引用
收藏
页码:287 / 303
页数:17
相关论文
共 27 条
[1]   A FAST SOLVER FOR NAVIER-STOKES EQUATIONS IN THE LAMINAR REGIME USING MORTAR FINITE-ELEMENT AND BOUNDARY-ELEMENT METHODS [J].
ACHDOU, Y ;
PIRONNEAU, O .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :985-1016
[2]  
Adams A, 2003, SOBOLEV SPACES
[3]  
BENABDALLAH A, MORTAR FINITE ELEMEN, V96
[4]   A SPECTRAL ELEMENT METHODOLOGY TUNED TO PARALLEL IMPLEMENTATIONS [J].
BENBELGACEM, F ;
MADAY, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :59-67
[5]  
BENBELGACEM F, IN PRESS MATH COMPUT
[6]  
BENBELGACEM F, 1993, THESIS U P M CURIE P
[7]   OPTIMAL FINITE-ELEMENT INTERPOLATION ON CURVED DOMAINS [J].
BERNARDI, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1212-1240
[8]  
BERNARDI C, 1990, 1 RESULTS MATH COMPU, V54, P21
[9]  
Bernardi C., 1992, NONLINEAR PARTIAL DI, P13
[10]  
BREZZI F, 1977, NUMER MATH, V28, P431, DOI 10.1007/BF01404345