Differentiation of Theta Visual Motion from Fourier Motion Requires LC16 and R18C12 Neurons in Drosophila

被引:5
作者
Ji, Xiaoxiao [1 ,2 ]
Yuan, Deliang [1 ,2 ]
Wei, Hongying [1 ,2 ]
Cheng, Yaxin [1 ,2 ]
Wang, Xinwei [1 ,2 ]
Yang, Jihua [1 ,2 ]
Hu, Pengbo [1 ,2 ]
Gestrich, Julia Yvonne [1 ,2 ]
Liu, Li [1 ,2 ,3 ]
Zhu, Yan [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Ctr Excellence Biomacromol, Inst Biophys, State Key Lab Brain & Cognit Sci, 15 Datun Rd, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Coll Life Sci, Beijing 100049, Peoples R China
[3] CAS Key Lab Mental Hlth, Beijing 100101, Peoples R China
关键词
FLIGHT ORIENTATION; LOCAL INTERNEURONS; FLY; CIRCUITS; MARKER; PERCEPTION; EXPRESSION; RECEPTORS; RESPONSES; DIRECTION;
D O I
10.1016/j.isci.2020.101041
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many animals perceive features of higher-order visual motion that are beyond the spatiotemporal correlations of luminance defined in first-order motion. Although the neural mechanisms of first-order motion detection have become understood in recent years, those underlying higher-order motion perception remain unclear. Here, we established a paradigm to assess the detection of theta motion-a type of higher-order motion-in freely walking Drosophila. Behavioral screening using this paradigm identified two clusters of neurons in the central brain, designated as R18C12, which were required for perception of theta motion but not for first-order motion. Furthermore, theta motion-activated R18C12 neurons were structurally and functionally located downstream of visual projection neurons in lobula, lobula columnar cells LC16, which activated R18C12 neurons via interactions of acetylcholine (ACh) and muscarinic acetylcholine receptors (mAChRs). The current study provides new insights into LC neurons and the neuronal mechanisms underlying visual information processing in complex natural scenes.
引用
收藏
页数:31
相关论文
共 65 条
  • [1] Neural Basis for Looming Size and Velocity Encoding in the Drosophila Giant Fiber Escape Pathway
    Ache, Jan M.
    Polsky, Jason
    Alghailani, Shada
    Parekh, Ruchi
    Breads, Patrick
    Peek, Martin Y.
    Bock, Davi D.
    von Reyn, Catherine R.
    Card, Gwyneth M.
    [J]. CURRENT BIOLOGY, 2019, 29 (06) : 1073 - +
  • [2] [Anonymous], 1984, Studies of Brain Function
  • [3] Neurons Forming Optic Glomeruli Compute Figure-Ground Discriminations in Drosophila
    Aptekar, Jacob W.
    Keles, Mehmet F.
    Lu, Patrick M.
    Zolotova, Nadezhda M.
    Frye, Mark A.
    [J]. JOURNAL OF NEUROSCIENCE, 2015, 35 (19) : 7587 - 7599
  • [4] Higher-Order Figure Discrimination in Fly and Human Vision
    Aptekar, Jacob W.
    Frye, Mark A.
    [J]. CURRENT BIOLOGY, 2013, 23 (16) : R694 - R700
  • [5] Figure Tracking by Flies Is Supported by Parallel Visual Streams
    Aptekar, Jacob W.
    Shoemaker, Patrick A.
    Fryel, Mark A.
    [J]. CURRENT BIOLOGY, 2012, 22 (06) : 482 - 487
  • [6] DETECTING THE DISPLACEMENT OF PERIODIC PATTERNS
    BADCOCK, DR
    DERRINGTON, AM
    [J]. VISION RESEARCH, 1985, 25 (09) : 1253 - 1258
  • [7] Object tracking in motion-blind flies
    Bahl, Armin
    Ammer, Georg
    Schilling, Tabea
    Borst, Alexander
    [J]. NATURE NEUROSCIENCE, 2013, 16 (06) : 730 - +
  • [8] Altered electrical properties in Drosophila neurons developing without synaptic transmission
    Baines, RA
    Uhler, JP
    Thompson, A
    Sweeney, ST
    Bate, M
    [J]. JOURNAL OF NEUROSCIENCE, 2001, 21 (05) : 1523 - 1531
  • [9] PRINCIPLES OF VISUAL-MOTION DETECTION
    BORST, A
    EGELHAAF, M
    [J]. TRENDS IN NEUROSCIENCES, 1989, 12 (08) : 297 - 306
  • [10] Common circuit design in fly and mammalian motion vision
    Borst, Alexander
    Helmstaedter, Moritz
    [J]. NATURE NEUROSCIENCE, 2015, 18 (08) : 1067 - 1076