Schemes analysis on immune multiobjective optimization in dynamic environments

被引:1
作者
Qian, Shuqu [1 ]
Liu, Yanmin [2 ]
Wu, Huihong [1 ]
Hang, Jin [1 ]
Guo, Benhua [1 ]
机构
[1] Anshun Univ, Sch Sci, Anshun 561000, Peoples R China
[2] Zunyi Normal Coll, Sch Math & Comp Sci, Zunyi 563002, Guizhou, Peoples R China
来源
2019 11TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC 2019), VOL 1 | 2019年
基金
中国国家自然科学基金;
关键词
artificial immune system; dynamic multiobjective optimization; change detection; change reaction; ALGORITHM;
D O I
10.1109/IHMSC.2019.00015
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a parallel immune algorithm (PIA) inspired by artificial immune system is proposed for solving dynamic multiobjective problems (DMOPs). The population is divided into nondominated subpopulation and dominated sub-population. One focuses on exploring Pareto-optimal set through immune clone and hypermutation, while another is exploited and improved via the simulated binary crossover and polynomial mutation. To improve the tracking ability, the change detection and change reaction are developed in PIA. In numerical experiments, the effect of change detection threshold and individual updating ratio on the performance of PIA is interpreted and analyzed from different perspectives and further possible research direction is discussed.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
[41]   Hybrid Techniques for Detecting Changes in Less Detectable Dynamic Multiobjective Optimization Problems [J].
Sahmoud, Shaaban ;
Topcuoglu, Haluk Rahmi .
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION), 2019, :1449-1456
[42]   A Mahalanobis Distance-Based Approach for Dynamic Multiobjective Optimization With Stochastic Changes [J].
Hu, Yaru ;
Zheng, Jinhua ;
Jiang, Shouyong ;
Yang, Shengxiang ;
Zou, Juan ;
Wang, Rui .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (01) :238-251
[43]   A diversity introduction strategy based on change intensity for evolutionary dynamic multiobjective optimization [J].
Liu, Ruochen ;
Peng, Luyao ;
Liu, Jiangdi ;
Liu, Jing .
SOFT COMPUTING, 2020, 24 (17) :12789-12799
[44]   HANDLING DYNAMIC MULTIOBJECTIVE PROBLEMS WITH PARTICLE SWARM OPTIMIZATION [J].
Diaz Manriquez, Alan ;
Toscano Pulido, Gregorio ;
Ramirez Torres, Jose Gabriel .
ICAART 2010: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1: ARTIFICIAL INTELLIGENCE, 2010, :337-342
[45]   A directed search strategy for evolutionary dynamic multiobjective optimization [J].
Wu, Yan ;
Jin, Yaochu ;
Liu, Xiaoxiong .
SOFT COMPUTING, 2015, 19 (11) :3221-3235
[46]   A Differential Prediction Model for Evolutionary Dynamic Multiobjective Optimization [J].
Cao, Leilei ;
Xu, Lihong ;
Goodman, Erik D. ;
Zhu, Shuwei ;
Li, Hui .
GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, :601-608
[47]   Interaction-Based Prediction for Dynamic Multiobjective Optimization [J].
Liu, Xiao-Fang ;
Xu, Xin-Xin ;
Zhan, Zhi-Hui ;
Fang, Yongchun ;
Zhang, Jun .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) :1881-1895
[48]   Weighted pointwise prediction method for dynamic multiobjective optimization [J].
Ahrari, Ali ;
Elsayed, Saber ;
Sarker, Ruhul ;
Essam, Daryl ;
Coello Coello, Carlos A. .
INFORMATION SCIENCES, 2021, 546 :349-367
[49]   A directed search strategy for evolutionary dynamic multiobjective optimization [J].
Yan Wu ;
Yaochu Jin ;
Xiaoxiong Liu .
Soft Computing, 2015, 19 :3221-3235
[50]   A similar environment transfer strategy for dynamic multiobjective optimization [J].
Ji, Junzhong ;
Zhang, Xiaoyu ;
Yang, Cuicui ;
Li, Xiang ;
Sui, Guangyuan .
INFORMATION SCIENCES, 2025, 707