Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations

被引:324
作者
Kammann, Claudia Irene [1 ,2 ]
Linsel, Sebastian [1 ]
Goessling, Johannes W. [1 ]
Koyro, Hans-Werner [1 ]
机构
[1] Univ Giessen, Dept Plant Ecol, D-35392 Giessen, Germany
[2] Univ Coll Dublin, Sch Biol & Environm Sci, Dublin 2, Ireland
关键词
CO2 gas exchange; Halophyte crop; Biochar; Water use efficiency; Nitrogen use efficiency; N2O emission; Quinoa; GAS-CHROMATOGRAPHIC SYSTEM; BLACK CARBON; MICROBIAL BIOMASS; WATER RELATIONS; RAPID ANALYSIS; NITROGEN; CO2; CHARCOAL; SEQUESTRATION; PRODUCTIVITY;
D O I
10.1007/s11104-011-0771-5
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The application of pyrogenic carbon, biochar, to agricultural soils is currently discussed as a win-win strategy to sequester carbon in soil, thus improving soil fertility and mitigate global warming. Our aim was to investigate if biochar may improve plant eco-physiological responses under sufficient water supply as well as moderate drought stress. A fully randomized greenhouse study was conducted with the pseudo-cereal Chenopodium quinoa Willd, using three levels of biochar addition (0, 100 and 200 t ha(-1)) to a sandy soil and two water treatments (60% and 20% of the water holding capacity of the control), investigating growth, water use efficiency, eco-physiological parameters and greenhouse gas (GHG) fluxes. Biochar application increased growth, drought tolerance and leaf-N- and water-use efficiency of quinoa despite larger plant-leaf areas. The plants growing in biochar-amended soil accumulated exactly the same amount of nitrogen in their larger leaf biomass than the control plants, causing significantly decreased leaf N-, proline- and chlorophyll-concentrations. In this regard, plant responses to biochar closely resembled those to elevated CO2. However, neither soil- nor plant-soil-respiration was higher in the larger plants, indicating less respiratory C losses per unit of biomass produced. Soil-N2O emissions were significantly reduced with biochar. The large application rate of 200 t ha(-1) biochar did not improve plant growth compared to 100 t ha(-1); hence an upper beneficial level exists. For quinoa grown in a sandy soil, biochar application might hence provide a win-win strategy for increased crop production, GHG emission mitigation and soil C sequestration.
引用
收藏
页码:195 / 210
页数:16
相关论文
共 50 条
  • [21] Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels
    Hariadi, Yuda
    Marandon, Karl
    Tian, Yu
    Jacobsen, Sven-Erik
    Shabala, Sergey
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (01) : 185 - 193
  • [22] The combined application of organic fertilizers improves the physical properties of soil associated to quinoa (Chenopodium quinoa Willd.) cultivation
    Bolo Valladares, J. D.
    Reynoso Zarate, A.
    Cosme De la Cruz, R. C.
    Arone Gaspar, G.
    Calderon Mendoza, C.
    SCIENTIA AGROPECUARIA, 2020, 11 (03) : 401 - 408
  • [23] A Plant-Fungus Bioassay Supports the Classification of Quinoa (Chenopodium quinoa Willd.) as Inconsistently Mycorrhizal
    Julianne A. Kellogg
    John P. Reganold
    Kevin M. Murphy
    Lynne A. Carpenter-Boggs
    Microbial Ecology, 2021, 82 : 135 - 144
  • [24] A Plant-Fungus Bioassay Supports the Classification of Quinoa (Chenopodium quinoa Willd.) as Inconsistently Mycorrhizal
    Kellogg, Julianne A.
    Reganold, John P.
    Murphy, Kevin M.
    Carpenter-Boggs, Lynne A.
    MICROBIAL ECOLOGY, 2021, 82 (01) : 135 - 144
  • [25] Root growth dynamics and productivity of quinoa ( Chenopodium quinoa Willd.) in response to fertilization and soil tillage
    Kakabouki, Ioanna P.
    Roussis, Ioannis
    Hela, Dimitra
    Papastylianou, Panayiota
    Folina, Antigolena
    Bilalis, Dimitrios
    FOLIA HORTICULTURAE, 2019, 31 (02) : 285 - 299
  • [26] Cover crops associated with quinoa (Chenopodium quinoa Willd) in the Peruvian Altiplano: Erosion reduction, improved soil health and agricultural yield
    Salcedo-Mayta, Selima
    Canihua-Rojas, Jorge
    Samaniego-Vivanco, Tomas
    Cruz-Luis, Juancarlos
    Perez-Porras, Wendy
    Cosme de la Cruz, Roberto Carlos
    SCIENTIA AGROPECUARIA, 2022, 13 (03) : 265 - +
  • [27] Comparative physiological and biochemical mechanisms of drought tolerance in three contrasting cultivars of quinoa (Chenopodium quinoa)
    Zhang, Yemeng
    Yang, Qian
    Zhu, Lili
    Chen, Zhiguo
    ANALES DEL JARDIN BOTANICO DE MADRID, 2022, 79 (01):
  • [28] Photosynthetic performance of quinoa (Chenopodium quinoa Willd.) after exposure to a gradual drought stress followed by a recovery period
    Manaa, Arafet
    Goussi, Rahma
    Derbali, Walid
    Cantamessa, Simone
    Essemine, Jemaa
    Barbato, Roberto
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2021, 1862 (05):
  • [29] Crop water use indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.) in response to drought stress
    Geerts, Sam
    Raes, Dirk
    Garcia, Magali
    Mendoza, Jorge
    Huanca, Ruben
    FIELD CROPS RESEARCH, 2008, 108 (02) : 150 - 156
  • [30] Compost and Humic Acid Mitigate the Salinity Stress on Quinoa (Chenopodium quinoa Willd L.) and Improve Some Sandy Soil Properties
    Rekaby, Saudi A.
    AL-Huqail, Arwa Abdulkreem
    Gebreel, Mostafa
    Alotaibi, Sami S.
    Ghoneim, Adel M.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2023, 23 (02) : 2651 - 2661