Exploration of Balanced Metrics on Symmetric Positive Definite Matrices

被引:4
作者
Thanwerdas, Yann [1 ]
Pennec, Xavier [1 ]
机构
[1] Univ Cote dAzur, INRIA, Epione, France
来源
GEOMETRIC SCIENCE OF INFORMATION | 2019年 / 11712卷
基金
欧洲研究理事会;
关键词
RIEMANNIAN GEOMETRY;
D O I
10.1007/978-3-030-26980-7_50
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symmetric Positive Definite (SPD) matrices have been used in many fields of medical data analysis. Many Riemannian metrics have been defined on this manifold but the choice of the Riemannian structure lacks a set of principles that could lead one to choose properly the metric. This drives us to introduce the principle of balanced metrics that relate the affine-invariant metric with the Euclidean and inverse-Euclidean metric, or the Bogoliubov-Kubo-Mori metric with the Euclidean and log-Euclidean metrics. We introduce two new families of balanced metrics, the mixed-power-Euclidean and the mixed-power-affine metrics and we discuss the relation between this new principle of balanced metrics and the concept of dual connections in information geometry.
引用
收藏
页码:484 / 493
页数:10
相关论文
共 13 条
[1]  
Amari Shun-ichi, 2007, Translations of mathematical monographs, V191
[2]   Log-euclidean metrics for fast and simple calculus on diffusion tensors [J].
Arsigny, Vincent ;
Fillard, Pierre ;
Pennec, Xavier ;
Ayache, Nicholas .
MAGNETIC RESONANCE IN MEDICINE, 2006, 56 (02) :411-421
[3]   Classification of covariance matrices using a Riemannian-based kernel for BCI applications [J].
Barachant, Alexandre ;
Bonnet, Stephane ;
Congedo, Marco ;
Jutten, Christian .
NEUROCOMPUTING, 2013, 112 :172-178
[4]   A Novel Dynamic System in the Space of SPD Matrices with Applications to Appearance Tracking [J].
Cheng, Guang ;
Vemuri, Baba C. .
SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01) :592-615
[5]  
Deligianni F, 2011, LECT NOTES COMPUT SC, V6801, P296, DOI 10.1007/978-3-642-22092-0_25
[6]  
Dryden I.L., 2010, POWER EUCLIDEAN METR
[7]   Riemannian geometry for the statistical analysis of diffusion tensor data [J].
Fletcher, P. Thomas ;
Joshi, Sarang .
SIGNAL PROCESSING, 2007, 87 (02) :250-262
[8]   Statistics on the manifold of multivariate normal distributions: Theory and application to Diffusion Tensor MRI processing [J].
Lenglet, Christophe ;
Rousson, Mikael ;
Deriche, Rachid ;
Faugeras, Olivier .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2006, 25 (03) :423-444
[9]   DTI segmentation by statistical surface evolution [J].
Lenglet, Christophe ;
Rousson, Mikael .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (06) :685-700
[10]  
Michor P.W., 2000, Infin. Dimens. Anal. Quantum Probab. Relat. Top, V3, P1