Hidden Path Selection Network for Semantic Segmentation of Remote Sensing Images

被引:17
作者
Yang, Kunping [1 ]
Tong, Xin-Yi [2 ]
Xia, Gui-Song [3 ,4 ]
Shen, Weiming [1 ]
Zhang, Liangpei [1 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430072, Peoples R China
[2] German Aerosp Ctr DLR, Remote Sensing Technol Inst, D-82234 Wessling, Germany
[3] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Inst Artificial Intelligence, Wuhan 430072, Peoples R China
[4] Wuhan Univ, Key Lab Informat Engn Surveying Mapping & Remote, Wuhan 430072, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Semantics; Remote sensing; Image segmentation; Optimization; Mathematical analysis; Manifolds; Benchmark testing; Benchmark dataset; hidden path selection; remote sensing image; semantic segmentation; SLOW FEATURE ANALYSIS; LAND-COVER; CLASSIFICATION;
D O I
10.1109/TGRS.2022.3197334
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Targeting at depicting land covers with pixelwise semantic categories, semantic segmentation in remote sensing images needs to portray diverse distributions over vast geographical locations, which is difficult to be achieved by the homogeneous pixelwise forward paths in the architectures of existing deep models. Although specific algorithms have been designed to select pixelwise adaptive forward paths for natural image analysis, it still lacks theoretical supports on how to obtain optimal selections. In this article, we provide mathematical analyses in terms of the parameter optimization, which guides us to design a method called hidden path selection network (HPS-Net). With the help of hidden variables deriving from an extra mini-branch, HPS-Net is able to tackle the inherent problem about inaccessible global optimums by adjusting the direct relationships between feature maps and pixelwise path selections in existing algorithms, which we call hidden path selection. For the better training and evaluation, we further refine and expand the 5-class Gaofen image dataset (GID-5) to a new one with 15 land-cover categories, i.e., GID-15. The experimental results on both GID-5 and GID-15 demonstrate that the proposed modules can stably improve the performance of different deep structures, which validates the proposed mathematical analyses.
引用
收藏
页数:15
相关论文
共 61 条
[1]  
Alshari E A., 2021, Global Transitions Proceedings, V2, P8, DOI DOI 10.1016/J.GLTP.2021.01.002
[2]   CLIMATE SCIENCE Uncertain future for vegetation cover [J].
Arneth, Almut .
NATURE, 2015, 524 (7563) :44-45
[3]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[4]   Comprehensively analyzing optical and polarimetric SAR features for land-use/land-cover classification and urban vegetation extraction in highly-dense urban area [J].
Bai, Yunkun ;
Sun, Guangmin ;
Li, Yu ;
Ma, Peifeng ;
Li, Gang ;
Zhang, Yuanzhi .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 103
[5]  
Chen LC, 2017, Arxiv, DOI [arXiv:1706.05587, 10.48550/arxiv.1706.05587.ArXiv, DOI 10.48550/ARXIV.1706.05587.ARXIV]
[6]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851
[7]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]   DeepGlobe 2018: A Challenge to Parse the Earth through Satellite Images [J].
Demir, Ilke ;
Koperski, Krzysztof ;
Lindenbaum, David ;
Pang, Guan ;
Huang, Jing ;
Bast, Saikat ;
Hughes, Forest ;
Tuia, Devis ;
Raskar, Ramesh .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :172-181
[10]   Object Detection in Aerial Images: A Large-Scale Benchmark and Challenges [J].
Ding, Jian ;
Xue, Nan ;
Xia, Gui-Song ;
Bai, Xiang ;
Yang, Wen ;
Yang, Michael Ying ;
Belongie, Serge ;
Luo, Jiebo ;
Datcu, Mihai ;
Pelillo, Marcello ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) :7778-7796