Boundedness of the anisotropic maximal and anisotropic singular integral operators in generalized Morrey spaces

被引:6
作者
Guliyev, Vagif S. [1 ,2 ]
Mustafayev, Rza Ch. [2 ]
机构
[1] Ahi Evran Univ, Dept Math, TR-40200 Kirsehir, Turkey
[2] ANAS, Inst Math & Mech, Baku AZ1141, Azerbaijan
关键词
Generalized Morrey spaces; anisotropic maximal operator; Hardy operator; anisotropic singular integral operator; SUFFICIENT CONDITIONS; DIFFERENTIAL-EQUATIONS; COEFFICIENTS; COMMUTATORS;
D O I
10.1007/s10114-011-9516-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give the conditions on the pair (omega (1), omega (2)) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space M-p,M-omega 1 to another M-p,M-omega 2, 1 < p < infinity, and from the space M-1,M-omega 1 to the weak space WM1,omega 2.
引用
收藏
页码:2361 / 2370
页数:10
相关论文
共 29 条
[1]  
Akbulut A., BOHEMICA MA IN PRESS
[2]  
BESOV OV, 1966, DOKL AKAD NAUK SSSR+, V169, P1250
[3]  
Bramanti M, 1996, B UNIONE MAT ITAL, V10B, P843
[4]  
Burenkov V., 2008, BOUNDEDNESS FRACTION
[5]   Boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Gogatishvili, A. ;
Guliyev, V. S. ;
Mustafayev, R. Ch. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) :739-758
[6]   Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces [J].
Burenkov, VI ;
Guliyev, HV .
STUDIA MATHEMATICA, 2004, 163 (02) :157-176
[7]  
BURENKOV VI, 2008, DOKL AKAD NAUK+, V422, P11
[8]   Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces [J].
Burenkov, Viktor I. ;
Guliyev, Huseyn V. ;
Guliyev, Vagif S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) :280-301
[9]   SINGULAR INTEGRAL OPERATORS AND DIFFERENTIAL EQUATIONS [J].
CALDERON, AP ;
ZYGMUND, A .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (04) :901-921
[10]   On embeddings between classical Lorentz spaces [J].
Carro, M ;
Pick, L ;
Soria, J ;
Stepanov, VD .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2001, 4 (03) :397-428