Asymptotic formulae for nonlinear functional difference equations

被引:6
作者
Castillo, S
Pinto, M
机构
[1] Univ Bio Bio, Dept Matemat, Fac Ciencias, Concepcion, Chile
[2] Univ Chile, Fac Ciencias, Dept Matemat, Santiago, Chile
关键词
D O I
10.1016/S0898-1221(01)00177-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show asymptotic formulae for solutions of the nonlinear functional difference equation y(n + 1) = L(y(n)) + V(n, y(n))+ f(n, y(n)), where y(n)(theta) = y(n + theta) for theta epsilon {-r, -r + 1, ..., 0}, L, V(n,.) are linear applications, and f(n,.) is not necessarily linear defined from {-r, -r + 1, ..., 0} to C-N. We ask for a trichotomic spectral condition on L, \V(n,.)\ --> 0 as n --> +infinity, \V(n+ 1,.) - V(n,.)\ epsilon l(1), f(n, 0) = 0, and there is gamma epsilon l(1) such that \f(n, x) - f(n, y)\ less than or equal to gamma (n)\x - y \. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:551 / 559
页数:9
相关论文
共 10 条
[1]  
Agarwal RP, 1992, Difference equations and inequalities
[2]  
[Anonymous], J DIFFERENCE EQU APP
[3]  
Castillo S, 1997, ADVANCES IN DIFFERENCE EQUATIONS-BOOK, P107
[4]   Riccati techniques and approximation for a second-order Poincare difference equation [J].
Chen, SZ ;
Wu, CQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :177-191
[5]   A GENERALIZATION OF POINCARE THEOREM FOR RECURRENCE EQUATIONS [J].
MATE, A ;
NEVAI, P .
JOURNAL OF APPROXIMATION THEORY, 1990, 63 (01) :92-97
[6]   DISCRETE DICHOTOMIES [J].
PINTO, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1994, 28 (1-3) :259-270
[7]  
PINTO M, 1995, J DIFFERENCE EQS APP, V1, P249
[8]   Asymptotic behavior of a Poincare recurrence system [J].
Pituk, M .
JOURNAL OF APPROXIMATION THEORY, 1997, 91 (02) :226-243
[9]  
PITUK M, 1997, J DIFFER EQU APPL, V3, P33
[10]  
Poincare H., 1885, AM J MATH, V7, P203, DOI DOI 10.2307/2369270