Wigner-Yanase skew information and uncertainty relations

被引:320
作者
Luo, SL [1 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Univ Vienna, Inst Expt Phys, A-1090 Vienna, Austria
关键词
D O I
10.1103/PhysRevLett.91.180403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Wigner-Araki-Yanase theorem puts a limitation on the measurement of observables in the presence of a conserved quantity, and the notion of Wigner-Yanase skew information quantifies the amount of information on the values of observables not commuting with the conserved quantity. We demonstrate that the statistical idea underlying the skew information is the Fisher information in the theory of statistical estimation. A quantum Cramer-Rao inequality and a new uncertainty relation in terms of the skew information are established, which shed considerable new light on the relationships between quantum measurement and statistical inference. The result is applied to estimating the evolution speed of quantum states.
引用
收藏
页数:4
相关论文
共 36 条
[1]   Measuring energy, estimating Hamiltonians, and the time-energy uncertainty relation [J].
Aharonov, Y ;
Massar, S ;
Popescu, S .
PHYSICAL REVIEW A, 2002, 66 (05) :11
[2]   GEOMETRY OF QUANTUM EVOLUTION [J].
ANANDAN, J ;
AHARONOV, Y .
PHYSICAL REVIEW LETTERS, 1990, 65 (14) :1697-1700
[3]  
[Anonymous], COMPLEXITY ENTROPY P
[4]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[5]   MEASUREMENT OF QUANTUM MECHANICAL OPERATORS [J].
ARAKI, H ;
YANASE, MM .
PHYSICAL REVIEW, 1960, 120 (02) :622-626
[6]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[7]   HOMOGENEITY OF STATE SPACE OF FACTORS OF TYPE-III [J].
CONNES, A ;
STORMER, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 28 (02) :187-196
[8]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[9]  
Cramer H., 1974, Mathematical Methods of Statistics, VVolume 9
[10]   Theory of statistical estimation. [J].
Fisher, RA .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1925, 22 :700-725