Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes

被引:53
作者
Son, Hyeongseok [1 ]
Lee, Junyong [1 ]
Lee, Jonghyeop [1 ]
Cho, Sunghyun [2 ]
Lee, Seungyong [1 ]
机构
[1] POSTECH, Dept Comp Sci & Engn, Pohang 37673, South Korea
[2] POSTECH, Grad Sch Artificial Intelligence, Pohang 37673, South Korea
来源
ACM TRANSACTIONS ON GRAPHICS | 2021年 / 40卷 / 05期
关键词
Video deblurring; pixel volume; blurinvariant motion estimation; deep learning; recurrent network;
D O I
10.1145/3453720
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For the success of video deblurring, it is essential to utilize information from neighboring frames. Most state-of-the-art video deblurring methods adopt motion compensation between video frames to aggregate information from multiple frames that can help deblur a target frame. However, the motion compensation methods adopted by previous deblurring methods are not blur-invariant, and consequently, their accuracy is limited for blurry frames with different blur amounts. To alleviate this problem, we propose two novel approaches to deblur videos by effectively aggregating information from multiple video frames. First, we present blur-invariant motion estimation learning to improvemotion estimation accuracy between blurry frames. Second, formotion compensation, instead of aligning frames by warping with estimated motions, we use a pixel volume that contains candidate sharp pixels to resolve motion estimation errors. We combine these two processes to propose an effective recurrent video deblurring network that fully exploits deblurred previous frames. Experiments show that our method achieves the state-of-the-art performance both quantitatively and qualitatively compared to recent methods that use deep learning.
引用
收藏
页数:18
相关论文
共 49 条
[1]  
Bar L, 2007, IEEE I CONF COMP VIS, P1410
[2]   PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing [J].
Barnes, Connelly ;
Shechtman, Eli ;
Finkelstein, Adam ;
Goldman, Dan B. .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[3]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[4]   Video Deblurring for Hand-held Cameras Using Patch-based Synthesis [J].
Cho, Sunghyun ;
Wang, Jue ;
Lee, Seungyong .
ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (04)
[5]   Fast Motion Deblurring [J].
Cho, Sunghyun ;
Lee, Seungyong .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05) :1-8
[6]  
Daraei Mohammad Hossein, 2014, P ISVC
[7]   Hand-Held Video Deblurring Via Efficient Fourier Aggregation [J].
Delbracio, Mauricio ;
Sapiro, Guillermo .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2015, 1 (04) :270-283
[8]  
Delbracio M, 2015, PROC CVPR IEEE, P2385, DOI 10.1109/CVPR.2015.7298852
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]   Deep Video Deblurring: The Devil is in the Details [J].
Gast, Jochen ;
Roth, Stefan .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, :3824-3833