Complexity of an SIR epidemic dynamics model with impulsive vaccination control

被引:77
作者
Zeng, GZ [1 ]
Chen, LS
Sun, LH
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, LiaoNing, Peoples R China
[2] ShaoGuan Univ, Dept Math, ShanGuan 512005, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.01.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considered an IR epidemic model with impulsive vaccination, which may inherently oscillate. We studied the impulsive control and get the conditions on which epidemic-elimination solution is globally asymptotically and the conditions of boundedness of system. On the other hand if the epidemic is turn out to be endemic, we studied numerically the influences of impulsive vaccination on the periodic oscillation of the system which is without impulsion and found phenomenon of chaos in this case. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:495 / 505
页数:11
相关论文
共 21 条
[1]  
[Anonymous], 2012, Practical numerical algorithms for chaotic systems
[2]  
Chen L. S., 1993, Nonlinear Biological Dynamical System
[3]   Stability properties of pulse vaccination strategy in SEIR epidemic model [J].
d'Onofrio, A .
MATHEMATICAL BIOSCIENCES, 2002, 179 (01) :57-72
[4]  
Davies B., 1999, EXPLORING CHAOS THEO
[5]   CRISES, SUDDEN CHANGES IN CHAOTIC ATTRACTORS, AND TRANSIENT CHAOS [J].
GREBOGI, C ;
OTT, E ;
YORKE, JA .
PHYSICA D, 1983, 7 (1-3) :181-200
[6]  
Lakshmikantham V., 1989, Series In Modern Applied Mathematics, V6
[7]   Dynamic complexities of a Holling I predator-prey model concerning periodic biological and chemical control [J].
Liu, B ;
Zhang, YJ ;
Chen, LS .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :123-134
[8]   INFLUENCE OF NONLINEAR INCIDENCE RATES UPON THE BEHAVIOR OF SIRS EPIDEMIOLOGIC MODELS [J].
LIU, WM ;
LEVIN, SA ;
IWASA, Y .
JOURNAL OF MATHEMATICAL BIOLOGY, 1986, 23 (02) :187-204
[9]   DYNAMIC BEHAVIOR OF EPIDEMIOLOGIC MODELS WITH NONLINEAR INCIDENCE RATES [J].
LIU, WM ;
HETHCOTE, HW ;
LEVIN, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1987, 25 (04) :359-380
[10]   Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator [J].
Liu, XN ;
Chen, LS .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :311-320