On selfadjoint functors satisfying polynomial relations

被引:11
作者
Agerholm, Troels [2 ]
Mazorchuk, Volodymyr [1 ]
机构
[1] Uppsala Univ, Dept Math, SE-47106 Uppsala, Sweden
[2] Aarhus Univ, Dept Math, DK-8000 Aarhus C, Denmark
基金
瑞典研究理事会;
关键词
Category; Functor; Module; Action; Double centralizer; Relation; SYMMETRIC ALGEBRAS; TENSOR-PRODUCTS; QUANTUM SL(2); CATEGORIFICATION; MODULES; REPRESENTATIONS; FINITE;
D O I
10.1016/j.jalgebra.2011.01.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study selfadjoint functors acting on categories of finite dimensional modules over finite dimensional algebras with an emphasis on functors satisfying some polynomial relations. Selfadjoint functors satisfying several easy relations, in particular, idempotents and square roots of a sum of identity functors. are classified. We also describe various natural constructions for new actions using external direct sums, external tensor products. Serre subcategories, quotients and centralizer subalgebras. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:448 / 467
页数:20
相关论文
共 42 条
[1]  
AUSLANDER M, 1974, COMMUN ALGEBRA, V1, P177
[2]  
BASS H, 1968, ALGEBRAIC K THEORY
[3]  
BERNSTEIN JN, 1980, COMPOS MATH, V41, P245
[4]   Derived equivalences for symmetric groups and sl2-categorification [J].
Chuang, Joseph ;
Rouquier, Raphael .
ANNALS OF MATHEMATICS, 2008, 167 (01) :245-298
[5]  
CONSTANTINESCU C, 2001, HILBERT SPACES N HOL, V61
[6]   Self-adjunctions and matrices [J].
Dosen, K ;
Petric, Z .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 184 (01) :7-39
[7]  
DOSEN K, ARXIVMATH0510039
[8]  
Erdmann K, 1999, FORUM MATH, V11, P177
[9]  
Faith C., 1973, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, V190
[10]  
Frenkel I, 2006, SEL MATH-NEW SER, V12, P379, DOI 10.1007/s00029-007-0031-y