Characteristic classes of complex hypersurfaces

被引:23
作者
Cappell, Sylvain E. [2 ]
Maxim, Laurentiu [1 ]
Schuermann, Joerg [3 ]
Shaneson, Julius L. [4 ]
机构
[1] Univ Wisconsin Madison, Dept Math, Madison, WI 53706 USA
[2] NYU, Courant Inst, New York, NY 10012 USA
[3] Univ Munster, Math Inst, D-48149 Munster, Germany
[4] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Characteristic classes; Hypersurfaces; Singularities; Milnor fiber; Vanishing cycles; Hodge theory; Intersection homology; Knot theory; CHERN CLASSES; INTERSECTION HOMOLOGY; HODGE GENERA; TOPOLOGY; MONODROMY; FORM;
D O I
10.1016/j.aim.2010.05.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Milnor-Hirzebruch class of a locally complete intersection X in an algebraic manifold M measures the difference between the (Poincare dual of the) Hirzebruch class of the virtual tangent bundle of X and, respectively, the Brasselet-Schurmann-Yokura (homology) Hirzebruch class of X. In this note, we calculate the Milnor-Hirzebruch class of a globally defined algebraic hypersurface X in terms of the corresponding Hirzebruch invariants of vanishing cycles and singular strata in a Whitney stratification of X. Our approach is based on Schurmann's specialization property for the motivic Hirzebruch class transformation of Brasselet-Schurmann-Yokura. The present results also yield calculations of Todd. Chern and L-type characteristic classes of hypersurfaces. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2616 / 2647
页数:32
相关论文
共 62 条