Minimal entropy preserves the Levy property: how and why

被引:42
作者
Esche, F
Schweizer, M [1 ]
机构
[1] Swiss Fed Inst Technol, ETH Zentrum, CH-8092 Zurich, Switzerland
[2] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
关键词
Levy processes; martingale measures; relative entropy; minimal entropy martingale measure; mathematical finance; incomplete markets;
D O I
10.1016/j.spa.2004.05.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let L be a multidimensional Levy process under P in its own filtration and consider all probability measures Q turning L into a local martingale. The minimal entropy martingale measure Q(E) is the unique Q which minimizes the relative entropy with respect to P. We prove that L is still a Levy process under Q(E) and explain precisely how and why this preservation of the Levy property occurs. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:299 / 327
页数:29
相关论文
共 19 条
[1]  
BUHLMANN H, 1996, CWI Q, V9, P291
[2]  
Chan T, 1999, ANN APPL PROBAB, V9, P504
[3]   The fundamental theorem of asset pricing for unbounded stochastic processes [J].
Delbaen, F ;
Schachermayer, W .
MATHEMATISCHE ANNALEN, 1998, 312 (02) :215-250
[4]  
ESCHE F, 2004, THESIS TU BERLIN
[5]  
FOLDES L, 1991, MATH FINANC, V1, P15
[6]   The minimal entropy martingale measure and the valuation problem in incomplete markets [J].
Frittelli, M .
MATHEMATICAL FINANCE, 2000, 10 (01) :39-52
[7]   The minimal entropy martingale measures for geometric Levy processes [J].
Fujiwara, T ;
Miyahara, Y .
FINANCE AND STOCHASTICS, 2003, 7 (04) :509-531
[8]  
Grandits P, 2002, ANN PROBAB, V30, P1003
[9]   MARTINGALES AND ARBITRAGE IN MULTIPERIOD SECURITIES MARKETS [J].
HARRISON, JM ;
KREPS, DM .
JOURNAL OF ECONOMIC THEORY, 1979, 20 (03) :381-408
[10]  
He S-W., 1992, SEMIMARTINGALE THEOR