The spectrum of the product of operators, and the product of their numerical ranges

被引:6
作者
Li, Chi-Kwong [1 ]
Tsai, Ming-Cheng [2 ]
Wang, Kuo-Zhong [3 ]
Wong, Ngai-Ching [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Spectrum; Positive operators; MATRICES;
D O I
10.1016/j.laa.2014.11.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a compact operator A is a multiple of a positive semi-definite operator if and only if sigma(AB) subset of <(W(A)W(B))over bar>, for all (rank one) operators B. An example of a normal operator is given to show that the equivalence conditions may fail in general. We then obtain conditions to identify other classes of operators A so that equivalence conditions hold. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:487 / 499
页数:13
相关论文
共 50 条
[41]   MINKOWSKI PRODUCT OF CONVEX SETS AND PRODUCT NUMERICAL RANGE [J].
Li, Chi-Kwong ;
Pelejo, Diane Christine ;
Poon, Yiu-Tung ;
Wang, Kuo-Zhong .
OPERATORS AND MATRICES, 2016, 10 (04) :945-965
[42]   On the Essential Numerical Spectrum of Operators on Banach Spaces [J].
Abdelhedi, Bouthaina ;
Boubaker, Wissal ;
Moalla, Nedra .
FILOMAT, 2019, 33 (07) :2191-2199
[43]   Numerical Ranges of Conjugations and Antilinear Operators on a Banach Space [J].
Cho, Muneo ;
Hur, Injo ;
Lee, Ji Eun .
FILOMAT, 2021, 35 (08) :2715-2720
[44]   Remarks on numerical ranges of operators in spaces with an indefinite metric [J].
Li, CK ;
Rodman, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (04) :973-982
[45]   REDUCED MINIMAL NUMERICAL RANGES OF OPERATORS ON A HILBERT SPACE [J].
杜鸿科 ;
王月清 ;
陆建明 .
ActaMathematicaScientia, 2009, 29 (01) :94-100
[46]   Noncircular elliptic discs as numerical ranges of nilpotent operators [J].
Gau, Hwa-Long ;
Wu, Pei Yuan .
LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (11-12) :1225-1233
[47]   Numerical ranges of composition operators with elliptic automorphism symbols [J].
Gao, Yong-Xin ;
Liang, Yuxia ;
Wang, Ya ;
Zhou, Ze-Hua .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (03)
[48]   Numerical Ranges of Radial Toeplitz Operators on Bergman Space [J].
Kuo Zhong Wang ;
Pei Yuan Wu .
Integral Equations and Operator Theory, 2009, 65
[49]   Numerical ranges of composition operators with elliptic automorphism symbols [J].
Yong-Xin Gao ;
Yuxia Liang ;
Ya Wang ;
Ze-Hua Zhou .
Banach Journal of Mathematical Analysis, 2023, 17
[50]   Maximal numerical ranges of certain classes of operators and approximation [J].
Dou, Rui ;
Ji, Youqing ;
Zhu, Sen .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2024, 18 (03)