The spectrum of the product of operators, and the product of their numerical ranges

被引:6
|
作者
Li, Chi-Kwong [1 ]
Tsai, Ming-Cheng [2 ]
Wang, Kuo-Zhong [3 ]
Wong, Ngai-Ching [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 80424, Taiwan
[3] Natl Chiao Tung Univ, Dept Appl Math, Hsinchu 30010, Taiwan
关键词
Numerical range; Spectrum; Positive operators; MATRICES;
D O I
10.1016/j.laa.2014.11.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a compact operator A is a multiple of a positive semi-definite operator if and only if sigma(AB) subset of <(W(A)W(B))over bar>, for all (rank one) operators B. An example of a normal operator is given to show that the equivalence conditions may fail in general. We then obtain conditions to identify other classes of operators A so that equivalence conditions hold. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:487 / 499
页数:13
相关论文
共 50 条
  • [1] NUMERICAL RANGES OF THE PRODUCT OF OPERATORS
    Du, Hongke
    Li, Chi-Kwong
    Wang, Kuo-Zhong
    Wang, Yueqing
    Zuo, Ning
    OPERATORS AND MATRICES, 2017, 11 (01): : 171 - 180
  • [2] On generalized numerical ranges of operators on an indefinite inner product space
    Bebiano, N
    Lemos, R
    da Providência, J
    Soares, G
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) : 203 - 233
  • [3] Numerical ranges and complex symmetric operators in semi-inner-product spaces
    Il Ju An
    Jaeseong Heo
    Journal of Inequalities and Applications, 2022
  • [4] Numerical ranges and complex symmetric operators in semi-inner-product spaces
    An, Il Ju
    Heo, Jaeseong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [5] On the spectrum of the product of closed operators
    Hardt, V
    Konstantinov, A
    Mennicken, R
    MATHEMATISCHE NACHRICHTEN, 2000, 215 : 91 - 102
  • [6] Product of operators and numerical range
    Chien, Mao-Ting
    Gau, Hwa-Long
    Li, Chi-Kwong
    Tsai, Ming-Cheng
    Wang, Kuo-Zhong
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (01) : 58 - 67
  • [7] On the geometry of numerical ranges in spaces with an indefinite inner product
    Bebiano, N
    Lemos, R
    da Providência, J
    Soares, G
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 17 - 34
  • [8] Product of operators and numerical range preserving maps
    Li, Chi-Kwong
    Sze, Hung-Sing
    STUDIA MATHEMATICA, 2006, 174 (02) : 169 - 182
  • [9] Decomposition of a scalar operator into a product of unitary operators with two points in spectrum
    Albeverio, Sergio
    Rabanovich, Slavik
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (06) : 1127 - 1137
  • [10] On the numerical ranges of a family of commuting operators
    A. M. Gomilko
    G. V. Radzievskii
    Mathematical Notes, 1997, 62 : 659 - 663