Minimal matrices in the Bruhat order for symmetric (0,1)-matrices

被引:12
作者
da Cruz, Henrique F. [1 ]
Fernandes, Rosario [2 ,3 ]
Furtado, Susana [4 ,5 ]
机构
[1] UBI, CMA, Rua Marques DAvila & Bolama, P-6201001 Covilha, Portugal
[2] Univ Nova Lisboa, CMA, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal
[3] Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal
[4] CEAFEL, Rua Dr Roberto Frias, P-4200464 Oporto, Portugal
[5] Fac Econ Porto, Rua Dr Roberto Frias, P-4200464 Oporto, Portugal
关键词
(0,1)-matrices; Bruhat order; Minimal matrices; Symmetric matrices; Term rank; TERM RANK; ROW;
D O I
10.1016/j.laa.2017.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the minimal matrices for the Bruhat order on the class of symmetric (0, 1)-matrices with given row sum vector. We will show that, when restricted to the symmetric matrices, new minimal matrices may appear besides the symmetric matrices for the nonrestricted Bruhat order. We modify the algorithm presented by Brualdi and Hwang (2004), which gives a minimal matrix for the Bruhat order on the class of (0, 1)-matrices with given row and column sum vectors, in order to obtain a minimal matrix for the Bruhat order on the class of symmetric (0, 1)-matrices with given row sum vector. We identify other minimal matrices in some of these classes. Namely, we determine all the minimal matrices when the row sums are constant and equal to 3. We then describe a family of symmetric matrices that are minimal for the Bruhat order on the class of 2k-by-2k (0, 1)-matrices with constant row sums equal to k + 1 and identify, in terms of the term rank of a matrix, a class of symmetric matrices that are related in the Bruhat order with one of these minimal matrices. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:160 / 184
页数:25
相关论文
共 12 条
  • [1] [Anonymous], 1999, Enumerative Combinatorics
  • [2] Brualdi R.A., 2006, ENCY MATH APPL, V108
  • [3] MATRICES OF ZEROS AND ONES WITH FIXED ROW AND COLUMN SUM VECTORS
    BRUALDI, RA
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1980, 33 (OCT) : 159 - 231
  • [4] Brualdi RA, 2004, ELECTRON J LINEAR AL, V12, P6
  • [5] More on the Bruhat order for (0,1)-matrices
    Brualdi, Richard A.
    Deaett, Louis
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) : 219 - 232
  • [6] On the t-term rank of a matrix
    Brualdi, Richard A.
    Kiernan, Kathleen P.
    Meyer, Seth A.
    Schroeder, Michael W.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1632 - 1643
  • [7] Combinatorial Batch Codes and Transversal Matroids (vol 4, pg 419, 2010)
    Brualdi, Richard A.
    Kiernan, Kathleen P.
    Meyer, Seth A.
    Schroeder, Michael W.
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (04) : 597 - 597
  • [8] COMBINATORIAL BATCH CODES AND TRANSVERSAL MATROIDS
    Brualdi, Richard A.
    Kiernan, Kathleen P.
    Meyer, Seth A.
    Schroeder, Michael W.
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2010, 4 (03) : 419 - 431
  • [9] The maximal length of a chain in the Bruhat order for a class of binary matrices
    Conflitti, Alessandro
    da Fonseca, C. M.
    Mamede, Ricardo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) : 753 - 757
  • [10] On the term rank partition
    Fernandes, Rosario
    da Cruz, Henrique F.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 458 : 134 - 148