Evapotranspiration Modeling Using Linear Genetic Programming Technique

被引:47
作者
Kisi, Ozgur [1 ]
Guven, Aytac [2 ]
机构
[1] Erciyes Univ, Dept Civil Engn, Hydraul Div, TR-38039 Kayseri, Turkey
[2] Gaziantep Univ, Dept Civil Engn, Hydraul Div, TR-27310 Gaziantep, Turkey
关键词
Evapotranspiration; Computer programming; Neural networks; SCOUR DOWNSTREAM; PREDICTION; ANN;
D O I
10.1061/(ASCE)IR.1943-4774.0000244
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The study investigates the accuracy of linear genetic programming (LOP), which is an extension to genetic programming (GP) technique, in daily reference evapotranspiration (ET0) modeling. The daily climatic data, solar radiation, air temperature, relative humidity, and wind speed from three stations, Windsor, Oakville, and Santa Rosa, in central California, are used as inputs to the LGP to estimate ET0 obtained using the FAO-56 Penman-Monteith equation. The accuracy of the LOP is compared with those of the support vector regression (SVR), artificial neural network (ANN), and those of the following empirical models: the California irrigation management system Penman, Hargreaves, Ritchie, and Turc methods. The root-mean-square errors, mean-absolute errors, and determination coefficient (R-2) statistics are used for evaluating the accuracy of the models. Based on the comparison results, the LOP is found to be superior alternative to the SVR and ANN techniques.
引用
收藏
页码:715 / 723
页数:9
相关论文
共 50 条
[21]   GENETIC PROGRAMMING WITH LINEAR REPRESENTATION: A SURVEY [J].
Oltean, Mihai ;
Grosan, Crina ;
Diosan, Laura ;
Mihaila, Cristina .
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2009, 18 (02) :197-238
[22]   A linear genetic programming approach for the prediction of solar global radiation [J].
Shavandi, Hassan ;
Ramyani, Sara Saeedi .
NEURAL COMPUTING & APPLICATIONS, 2013, 23 (3-4) :1197-1204
[23]   ROLL WEAR MODELING USING GENETIC PROGRAMMING - INDUSTRY CASE STUDY [J].
Kovacic, Miha ;
Mihevc, Andrej ;
Tercelj, Milan .
MATERIALI IN TEHNOLOGIJE, 2019, 53 (03) :319-325
[24]   Modeling the adsorption of phenols and nitrophenols by activated carbon using genetic programming [J].
Z-Flores, Emigdio ;
Abatal, Mohamed ;
Bassam, Ali ;
Trujillo, Leonardo ;
Juarez-Smith, Perla ;
El Hamzaoui, Youness .
JOURNAL OF CLEANER PRODUCTION, 2017, 161 :860-870
[25]   Suspended sediment modeling using genetic programming and soft computing techniques [J].
Kisi, Ozgur ;
Dailr, Ali Hosseinzadeh ;
Cimen, Mesut ;
Shiri, Jalal .
JOURNAL OF HYDROLOGY, 2012, 450 :48-58
[26]   Automatic modeling of a gas turbine using genetic programming: An experimental study [J].
Enriquez-Zarate, Josue ;
Trujillo, Leonardo ;
de lara, Salvador ;
Castelli, Mauro ;
Z-Flores, Emigdio ;
Munoz, Luis ;
Popovic, Ales .
APPLIED SOFT COMPUTING, 2017, 50 :212-222
[27]   Modeling Water-Quality Parameters Using Genetic Algorithm-Least Squares Support Vector Regression and Genetic Programming [J].
Bozorg-Haddad, Omid ;
Soleimani, Shima ;
Loaiciga, Hugo A. .
JOURNAL OF ENVIRONMENTAL ENGINEERING, 2017, 143 (07)
[28]   A Hybrid Data-Driven Machine Learning Technique for Evapotranspiration Modeling in Various Climates [J].
Valipour, Mohammad ;
Sefidkouhi, Mohammad Ali Gholami ;
Raeini-Sarjaz, Mahmoud ;
Guzman, Sandra M. .
ATMOSPHERE, 2019, 10 (06)
[29]   Genetic Programming and Jominy Test Modeling [J].
Kovacic, M. .
MATERIALS AND MANUFACTURING PROCESSES, 2009, 24 (7-8) :806-808
[30]   Evapotranspiration modelling from climatic data using a neural computing technique [J].
Kisi, Ozgur .
HYDROLOGICAL PROCESSES, 2007, 21 (14) :1925-1934