Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody

被引:59
作者
Christensen, Camilla [1 ,2 ,3 ,4 ]
Kristensen, Lotte K. [1 ,2 ,3 ,4 ]
Alfsen, Maria Z. [1 ,2 ,3 ,4 ]
Nielsen, Carsten H. [1 ,2 ,3 ,4 ]
Kjaer, Andreas [2 ,3 ,4 ]
机构
[1] Minerva Imaging, Copenhagen, Denmark
[2] Rigshosp, Dept Clin Physiol Nucl Med & PET, Copenhagen, Denmark
[3] Rigshosp, Dept Biomed Sci, Cluster Mol Imaging, Copenhagen, Denmark
[4] Univ Copenhagen, Copenhagen, Denmark
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Molecular imaging; Positron emission tomography (PET); PD-L1; Immunotherapy; Immune checkpoint inhibition; PEMBROLIZUMAB; RADIOTHERAPY; CRITERIA; BENEFIT; ASSAY;
D O I
10.1007/s00259-019-04646-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Despite remarkable clinical responses and prolonged survival across several cancers, not all patients benefit from PD-1/PD-L1 immune checkpoint blockade. Accordingly, assessment of tumour PD-L1 expression by immunohistochemistry (IHC) is increasingly applied to guide patient selection, therapeutic monitoring, and improve overall response rates. However, tissue-based methods are invasive and prone to sampling error. We therefore developed a PET radiotracer to specifically detect PD-L1 expression in a non-invasive manner, which could be of diagnostic and predictive value. Methods Anti-PD-L1 (clone 6E11, Genentech) was site-specifically conjugated with DIBO-DFO and radiolabelled with Zr-89 (Zr-89-DFO-6E11). Zr-89-DFO-6E11 was optimized in vivo by longitudinal PET imaging and dose escalation with excess unlabelled 6E11 in HCC827 tumour-bearing mice. Specificity of Zr-89-DFO-6E11 was evaluated in NSCLC xenografts and syngeneic tumour models with different levels of PD-L1 expression. In vivo imaging data was supported by ex vivo biodistribution, flow cytometry, and IHC. To evaluate the predictive value of Zr-89-DFO-6E11 PET imaging, CT26 tumour-bearing mice were subjected to external radiation therapy (XRT) in combination with PD-L1 blockade. Results Zr-89-DFO-6E11 was successfully labelled with a high radiochemical purity. The HCC827 tumours and lymphoid tissue were identified by Zr-89-DFO-6E11 PET imaging, and co-injection with 6E11 increased the relative tumour uptake and decreased the splenic uptake. Zr-89-DFO-6E11 detected the differences in PD-L1 expression among tumour models as evaluated by ex vivo methods. Zr-89-DFO-6E11 quantified the increase in PD-L1 expression in tumours and spleens of irradiated mice. XRT and anti-PD-L1 therapy effectively inhibited tumour growth in CT26 tumour-bearing mice (p < 0.01), and the maximum Zr-89-DFO-6E11 tumour-to-muscle ratio correlated with response to therapy (p = 0.0252). Conclusion PET imaging with Zr-89-DFO-6E11 is an attractive approach for specific, non-invasive, whole-body visualization of PD-L1 expression. PD-L1 expression can be modulated by radiotherapy regimens and Zr-89-DFO-6E11 PET is able to monitor these changes and predict the response to therapy in an immunocompetent tumour model.
引用
收藏
页码:1302 / 1313
页数:12
相关论文
共 32 条
[1]   Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial [J].
Balar, Arjun V. ;
Galsky, Matthew D. ;
Rosenberg, Jonathan E. ;
Powles, Thomas ;
Petrylak, Daniel P. ;
Bellmunt, Joaquim ;
Loriot, Yohann ;
Necchi, Andrea ;
Hoffman-Censits, Jean ;
Perez-Gracia, Jose Luis ;
Dawson, Nancy A. ;
van der Heijden, Michiel S. ;
Dreicer, Robert ;
Srinivas, Sandy ;
Retz, Margitta M. ;
Joseph, Richard W. ;
Drakaki, Alexandra ;
Vaishampayan, Ulka N. ;
Sridhar, Srikala S. ;
Quinn, David I. ;
Duran, Ignacio ;
Shaffer, David R. ;
Eigl, Bernhard J. ;
Grivas, Petros D. ;
Yu, Evan Y. ;
Li, Shi ;
Kadel, Edward E., III ;
Boyd, Zachary ;
Bourgon, Richard ;
Hegde, Priti S. ;
Mariathasan, Sanjeev ;
Thastrom, AnnChristine ;
Abidoye, Oyewale O. ;
Fine, Gregg D. ;
Bajorin, Dean F. .
LANCET, 2017, 389 (10064) :67-76
[2]   89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer [J].
Bensch, Frederike ;
van der Veen, Elly L. ;
Lub-de Hooge, Marjolijn N. ;
Jorritsma-Smit, Annelies ;
Boellaard, Ronald ;
Kok, Iris C. ;
Oosting, Sjoukje F. ;
Schroder, Carolina P. ;
Hiltermann, T. Jeroen N. ;
van der Wekken, Anthonie J. ;
Groen, Harry J. M. ;
Kwee, Thomas C. ;
Elias, Sjoerd G. ;
Gietema, Jourik A. ;
Bohorquez, Sandra Sanabria ;
de Crespigny, Alex ;
Williams, Simon-Peter ;
Mancao, Christoph ;
Brouwers, Adrienne H. ;
Fine, Bernard M. ;
de Vries, Elisabeth G. E. .
NATURE MEDICINE, 2018, 24 (12) :1852-+
[3]   Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC) -: A systematic review and meta-analysis (MA) by the European lung cancer working party for the IASLC lung cancer staging project [J].
Berghmans, Thierry ;
Dusart, Michele ;
Paesmans, Marianne ;
Hossein-Foucher, Claude ;
Buvat, Irene ;
Castaigne, Catherine ;
Scherpereel, Arnaud ;
Mascaux, Celine ;
Moreau, Michel ;
Roelandts, Martine ;
Alard, Stphane ;
Meert, Anne-Pascale ;
Patz, Edward F., Jr. ;
Lafitte, Jean-Jacques ;
Sculier, Jean-Paul .
JOURNAL OF THORACIC ONCOLOGY, 2008, 3 (01) :6-12
[4]   Understanding the tumor immune microenvironment (TIME) for effective therapy [J].
Binnewies, Mikhail ;
Roberts, Edward W. ;
Kersten, Kelly ;
Chan, Vincent ;
Fearon, Douglas F. ;
Merad, Miriam ;
Coussens, Lisa M. ;
Gabrilovich, Dmitry I. ;
Ostrand-Rosenberg, Suzanne ;
Hedrick, Catherine C. ;
Vonderheide, Robert H. ;
Pittet, Mikael J. ;
Jain, Rakesh K. ;
Zou, Weiping ;
Howcroft, T. Kevin ;
Woodhouse, Elisa C. ;
Weinberg, Robert A. ;
Krummel, Matthew F. .
NATURE MEDICINE, 2018, 24 (05) :541-550
[5]   Noninvasive imaging of the PD-1:PD-L1 immune checkpoint: Embracing nuclear medicine for the benefit of personalized immunotherapy [J].
Broos, Katrijn ;
Lecocq, Quentin ;
Raes, Geert ;
Devoogdt, Nick ;
Keyaerts, Marleen ;
Breckpot, Karine .
THERANOSTICS, 2018, 8 (13) :3559-3570
[6]   A humanized antibody for imaging immune checkpoint ligand PD-L1 expression in tumors [J].
Chatterjee, Samit ;
Lesniak, Wojciech G. ;
Gabrielson, Matthew ;
Lisok, Ala ;
Wharram, Bryan ;
Sysa-Shah, Polina ;
Azad, Babak Behnam ;
Pomper, Martin G. ;
Nimmagadda, Sridhar .
ONCOTARGET, 2016, 7 (09) :10215-10227
[7]   Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma [J].
Daud, Adil I. ;
Wolchok, Jedd D. ;
Robert, Caroline ;
Hwu, Wen-Jen ;
Weber, Jeffrey S. ;
Ribas, Antoni ;
Hodi, F. Stephen ;
Joshua, Anthony M. ;
Kefford, Richard ;
Hersey, Peter ;
Joseph, Richard ;
Gangadhar, Tara C. ;
Dronca, Roxana ;
Patnaik, Amita ;
Zarour, Hassane ;
Roach, Charlotte ;
Toland, Grant ;
Lunceford, Jared K. ;
Li, Xiaoyun Nicole ;
Emancipator, Kenneth ;
Dolled-Filhart, Marisa ;
Kang, S. Peter ;
Ebbinghaus, Scot ;
Hamid, Omid .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (34) :4102-+
[8]   Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice [J].
Deng, Liufu ;
Liang, Hua ;
Burnette, Byron ;
Beckett, Michael ;
Darga, Thomas ;
Weichselbaum, Ralph R. ;
Fu, Yang-Xin .
JOURNAL OF CLINICAL INVESTIGATION, 2014, 124 (02) :687-695
[9]   The antitumor immune response generated by fractionated radiation therapy may be limited by tumor cell adaptive resistance and can be circumvented by PD-L1 blockade [J].
Dovedi, S. J. ;
Illidge, T. M. .
ONCOIMMUNOLOGY, 2015, 4 (07) :1-4
[10]   Acquired Resistance to Fractionated Radiotherapy Can Be Overcome by Concurrent PD-L1 Blockade [J].
Dovedi, Simon J. ;
Adlard, Amy L. ;
Lipowska-Bhalla, Grazyna ;
McKenna, Conor ;
Jones, Sherrie ;
Cheadle, Eleanor J. ;
Stratford, Ian J. ;
Poon, Edmund ;
Morrow, Michelle ;
Stewart, Ross ;
Jones, Hazel ;
Wilkinson, Robert W. ;
Honeychurch, Jamie ;
Illidge, Tim M. .
CANCER RESEARCH, 2014, 74 (19) :5458-5468