Self-Supervised Variational Auto-Encoders

被引:6
|
作者
Gatopoulos, Ioannis [1 ,2 ]
Tomczak, Jakub M. [2 ]
机构
[1] Univ Amsterdam, Inst Informat, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Vrije Univ Amsterdam, Dept Comp Sci, Boelelaan 1111, NL-1081 HV Amsterdam, Netherlands
关键词
deep generative modeling; probabilistic modeling; deep learning; non-learnable transformations;
D O I
10.3390/e23060747
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Density estimation, compression, and data generation are crucial tasks in artificial intelligence. Variational Auto-Encoders (VAEs) constitute a single framework to achieve these goals. Here, we present a novel class of generative models, called self-supervised Variational Auto-Encoder (selfVAE), which utilizes deterministic and discrete transformations of data. This class of models allows both conditional and unconditional sampling while simplifying the objective function. First, we use a single self-supervised transformation as a latent variable, where the transformation is either downscaling or edge detection. Next, we consider a hierarchical architecture, i.e., multiple transformations, and we show its benefits compared to the VAE. The flexibility of selfVAE in data reconstruction finds a particularly interesting use case in data compression tasks, where we can trade-off memory for better data quality and vice-versa. We present the performance of our approach on three benchmark image data (Cifar10, Imagenette64, and CelebA).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Semantic-Aware Auto-Encoders for Self-supervised Representation Learning
    Wang, Guangrun
    Tang, Yansong
    Lin, Liang
    Torr, Philip H. S.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9654 - 9665
  • [2] HopMAE: Self-supervised Graph Masked Auto-Encoders from a Hop Perspective
    Shi, Chenjunhao
    Li, Jin
    Zhuang, Jianzhi
    Yao, Xi
    Huang, Yisong
    Fu, Yang-Geng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14876 : 343 - 355
  • [3] Correlated Variational Auto-Encoders
    Tang, Da
    Liang, Dawen
    Jebara, Tony
    Ruozzi, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [4] Hyperspherical Variational Auto-Encoders
    Davidson, Tim R.
    Falorsi, Luca
    De Cao, Nicola
    Kipf, Thomas
    Tomczak, Jakub M.
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 856 - 865
  • [5] On Disentanglement and Mutual Information in Semi-Supervised Variational Auto-Encoders
    Gordon Rodriguez, Elliott
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1257 - 1262
  • [6] 3D-OAE: Occlusion Auto-Encoders for Self-Supervised Learning on Point Clouds
    Zhou, Junsheng
    Wen, Xin
    Ma, Baorui
    Liu, Yu-Shen
    Gao, Yue
    Fang, Yi
    Han, Zhizhong
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 15416 - 15423
  • [7] Monte Carlo Variational Auto-Encoders
    Thin, Achille
    Kotelevskii, Nikita
    Durmus, Alain
    Panov, Maxim
    Moulines, Eric
    Doucet, Arnaud
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139 : 7258 - 7267
  • [8] Consistency Regularization for Variational Auto-Encoders
    Sinha, Samarth
    Dieng, Adji B.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [9] Radon-Sobolev Variational Auto-Encoders
    Turinici, Gabriel
    NEURAL NETWORKS, 2021, 141 : 294 - 305
  • [10] Genomic data imputation with variational auto-encoders
    Qiu, Yeping Lina
    Zheng, Hong
    Gevaert, Olivier
    GIGASCIENCE, 2020, 9 (08):