Nonlinear Fredholm integral equations and majorant functions

被引:12
作者
Ezquerro, J. A. [1 ]
Hernandez-Veron, M. A. [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Calle Madre de Dios 53, Logrono 26006, La Rioja, Spain
关键词
Fredholm integral equation; Newton's method; Majorant function; Domain of existence of solution; Domain of uniqueness of solution; Error estimates;
D O I
10.1007/s11075-019-00656-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
From the majorant principle of Kantorovich and the theoretical significance of Newton's method, we obtain domains of existence and uniqueness of solution for nonlinear Fredholm integral equations, so that these domains are defined from the positive real zeros of a scalar function that we call majorant function. We illustrate this study with three Fredholm integral equations, where separable and nonseparable kernels are involved, by obtaining domains of existence and uniqueness of solution, approximating solutions numerically and giving a priori and a posteriori error estimates of the approximations.
引用
收藏
页码:1303 / 1323
页数:21
相关论文
共 26 条
[1]   Computation of spectral subspaces for weakly singular integral operators [J].
Ahues, M ;
Limaye, BV .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (1-2) :1-14
[2]   Numerical solution of linear and nonlinear Fredholm integral equations by using weighted mean-value theorem [J].
Alturk, Ahmet .
SPRINGERPLUS, 2016, 5
[3]  
[Anonymous], 2010, Seven lectires on theory and numerical solution of Volterra integral equations
[4]  
[Anonymous], 1984, RES NOTES MATH
[5]  
Awawdeh F., 2009, INT MATH FORUM, V4, P805
[6]  
Carutasu V., 2001, Gen Math, V9, P31
[7]  
Emamzadeh MJ, 2010, J MATH EXT, V4, P51
[8]   A variant of the Newton-Kantorovich theorem for nonlinear integral equations of mixed Hammerstein type [J].
Ezquerro, J. A. ;
Gonzalez, D. ;
Hernandez, M. A. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) :9536-9546
[9]  
Ezquerro J. A., 2017, Newton's method: an updated approach of Kantorovich's theory. Frontiers in mathematics
[10]  
Ezquerro JA, 2005, J COMPUT ANAL APPL, V7, P437