On a generalized Erdos-Rademacher problem

被引:4
作者
Liu, Xizhi [1 ]
Mubayi, Dhruv [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
color critical graphs; Erdos-Rademacher problem; triangle covering number;
D O I
10.1002/jgt.22768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The triangle covering number of a graph is the minimum number of vertices that hit all triangles. Given positive integers s, t and an n-vertex graph G with [n(2)/4] + t edges and triangle covering number s, we determine (for large n) sharp bounds on the minimum number of triangles in G and also describe the extremal constructions. Similar results are proved for cliques of larger size and color critical graphs. This extends classical work of Rademacher, Erdos, and Lovasz-Simonovits whose results apply only to s <= t. Our results also address two conjectures of Xiao and Katona. We prove one of them and give a counterexample and prove a modified version of the other conjecture.
引用
收藏
页码:101 / 126
页数:26
相关论文
共 10 条
[1]  
[Anonymous], 1962, MAGYAR TUD AKAD MAT
[2]  
Clemen, 2020, ARXIV PREPRINT ARXIV
[3]   THE ASYMPTOTIC NUMBER OF GRAPHS NOT CONTAINING A FIXED SUBGRAPH AND A PROBLEM FOR HYPERGRAPHS HAVING NO EXPONENT [J].
ERDOS, P ;
FRANKL, P ;
RODL, V .
GRAPHS AND COMBINATORICS, 1986, 2 (02) :113-121
[4]  
Erdos P., 1962, Illinois Journal of Mathematics, V6, P122
[5]  
Lovasz L., 1983, Studies in Pure Math, Birkhauser, P459
[6]  
Mantel W., 1906, Wiskundige Opgaven, V10, P60
[7]   Counting substructures I: Color critical graphs [J].
Mubayi, Dhruv .
ADVANCES IN MATHEMATICS, 2010, 225 (05) :2731-2740
[8]  
Simonovits M., 1968, THEORY GRAPHS PROC C, P279
[9]  
Turan P., 1941, Mat. Fiz. Lapok, V48, P436
[10]   The number of triangles is more when they have no common vertex [J].
Xiao, Chuanqi ;
Katona, Gyula O. H. .
DISCRETE MATHEMATICS, 2021, 344 (05)