SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network

被引:446
作者
Hu, Jian [1 ]
Li, Xiangjie [2 ]
Coleman, Kyle [1 ]
Schroeder, Amelia [1 ]
Ma, Nan [3 ]
Irwin, David J. [4 ]
Lee, Edward B. [5 ]
Shinohara, Russell T. [1 ]
Li, Mingyao [1 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
[3] Univ Penn, Weitzman Sch Design, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Neurol, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Translat Neuropathol Res Lab, Dept Pathol & Lab Med, Perelman Sch Med, Philadelphia, PA 19104 USA
关键词
IDENTIFICATION; SEQ;
D O I
10.1038/s41592-021-01255-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
SpaGCN is a spatially resolved transcriptomics data analysis tool for identifying spatial domains and spatially variable genes using graph convolutional networks. Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.
引用
收藏
页码:1342 / +
页数:15
相关论文
共 39 条
[1]   SpaGE: Spatial Gene Enhancement using scRNA-seq [J].
Abdelaal, Tamim ;
Mourragui, Soufiane ;
Mahfouz, Ahmed ;
Reinders, Marcel J. T. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (18) :E107-E107
[2]   Spatially Resolved Transcriptomes-Next Generation Tools for Tissue Exploration [J].
Asp, Michaela ;
Bergenstrahle, Joseph ;
Lundeberg, Joakim .
BIOESSAYS, 2020, 42 (10)
[3]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[4]   Robust decomposition of cell type mixtures in spatial transcriptomics [J].
Cable, Dylan M. ;
Murray, Evan ;
Zou, Luli S. ;
Goeva, Aleksandrina ;
Macosko, Evan Z. ;
Chen, Fei ;
Irizarry, Rafael A. .
NATURE BIOTECHNOLOGY, 2022, 40 (04) :517-+
[5]  
Chen A, LARGE FIELD VIEW SPA, DOI [10.1101/2021.01.17.427004 (2021, DOI 10.1101/2021.01.17.427004(2021]
[6]   Spatially resolved, highly multiplexed RNA profiling in single cells [J].
Chen, Kok Hao ;
Boettiger, Alistair N. ;
Moffitt, Jeffrey R. ;
Wang, Siyuan ;
Zhuang, Xiaowei .
SCIENCE, 2015, 348 (6233)
[7]   Spatial Transcriptomics and In Situ Sequencing to Study Alzheimer's Disease [J].
Chen, Wei-Ting ;
Lu, Ashley ;
Craessaerts, Katleen ;
Pavie, Benjamin ;
Frigerio, Carlo Sala ;
Corthout, Nikky ;
Qian, Xiaoyan ;
Lalakova, Jana ;
Kuhnemund, Malte ;
Voytyuk, Iryna ;
Wolfs, Leen ;
Mancuso, Renzo ;
Salta, Evgenia ;
Balusu, Sriram ;
Snellinx, An ;
Munck, Sebastian ;
Jurek, Aleksandra ;
Navarro, Jose Fernandez ;
Saido, Takaomi C. ;
Huitinga, Inge ;
Lundeberg, Joakim ;
Fiers, Mark ;
De Strooper, Bart .
CELL, 2020, 182 (04) :976-+
[8]   Microscopic examination of spatial transcriptome using Seq-Scope [J].
Cho, Chun-Seok ;
Xi, Jingyue ;
Si, Yichen ;
Park, Sung-Rye ;
Hsu, Jer-En ;
Kim, Myungjin ;
Jun, Goo ;
Kang, Hyun Min ;
Lee, Jun Hee .
CELL, 2021, 184 (13) :3559-+
[9]  
Dataset, 2020, MOUS POST BRAIN DAT
[10]   Identification of spatial expression trends in single-cell gene expression data [J].
Edsgard, Daniel ;
Johnsson, Per ;
Sandberg, Rickard .
NATURE METHODS, 2018, 15 (05) :339-+