On a family of triangle groups in complex hyperbolic geometry

被引:1
作者
Han, Minghua [1 ,2 ]
Xie, Baohua [1 ]
Xie, Dong [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Kaili Univ, Sch Educ Sci, Kaili 556011, Peoples R China
关键词
Complex hyperbolic space; Triangle groups; R-spheres; FLEXIBILITY;
D O I
10.1016/j.topol.2017.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the deformation of triangle groups of type (3, n, infinity) determined by three R-circles R-0, R-1, R-2 with only rotational symmetry, which generalizes the problem studied by Falbel and Parker in [4]. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1999, OXFORD MATH MONOGRAP
[2]   Flexibility of ideal triangle groups in complex hyperbolic geometry [J].
Falbel, E ;
Koseleff, PV .
TOPOLOGY, 2000, 39 (06) :1209-1223
[3]   The moduli space of the modular group in complex hyperbolic geometry [J].
Falbel, E ;
Parker, JR .
INVENTIONES MATHEMATICAE, 2003, 152 (01) :57-88
[4]  
Falbel E, 2002, MATH RES LETT, V9, P379
[5]   Rigidity and flexibility of triangle groups in complex hyperbolic geometry [J].
Falbel, E ;
Koseleff, PV .
TOPOLOGY, 2002, 41 (04) :767-786
[6]  
GOLDMAN WM, 1992, J REINE ANGEW MATH, V425, P71
[7]   Complex hyperbolic quasi-Fuchsian groups and Toledo's invariant - In memory of Hanna Sandler [J].
Gusevskii, N ;
Parker, JR .
GEOMETRIAE DEDICATA, 2003, 97 (01) :151-185
[8]   COMPLEX HYPERBOLIC (3, 3, n) TRIANGLE GROUPS [J].
Parker, John R. ;
Wang, Jieyan ;
Xie, Baohua .
PACIFIC JOURNAL OF MATHEMATICS, 2016, 280 (02) :433-453
[9]   Traces in complex hyperbolic triangle groups [J].
Pratoussevitch, A .
GEOMETRIAE DEDICATA, 2005, 111 (01) :159-185
[10]  
Schwartz R.E., 2002, Invited Lectures, V1, P339