Ambient Performance Testing of the CubeSat Infrared Atmospheric Sounder (CIRAS)

被引:5
作者
Pagano, Thomas S. [1 ]
Schwochert, Mark A. [1 ]
Rafol, Sir B. [1 ]
Maruyama, Yuki [1 ]
Monacelli, Brian [1 ]
Johnson, Dean L. [1 ]
Ting, David Z. [1 ]
Wilson, Daniel W. [1 ]
Gibson, Megan S. [2 ]
Kampe, Thomas U. [3 ]
Soto, Juancarlos [3 ]
Howell, James [3 ]
Wilson, Robert C. [4 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr,M-S 306-443, Pasadena, CA 91109 USA
[2] Sierra Lobo Inc, 465 N Halstead St,Suite 101, Pasadena, CA 91109 USA
[3] Ball Aerosp & Technol Corp, 1600 Commerce St, Boulder, CO 80301 USA
[4] Raytheon Co, Waltham, MA 02451 USA
来源
CUBESATS AND SMALLSATS FOR REMOTE SENSING V | 2021年 / 11832卷
关键词
Infrared; Sounding; CubeSat; Alignment; Spectral; Calibration;
D O I
10.1117/12.2593625
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hyperspectral infrared measurements of Earth's atmosphere from space have proven their value for weather forecasting, climate science and atmospheric composition. The CubeSat Infrared Atmospheric Sounder (CIRAS) instrument will demonstrate a fully functional infrared temperature, water vapor and carbon monoxide sounder in a CubeSat sized volume for at least an order of magnitude lower cost than legacy systems. Design for a CubeSat significantly reduces cost of access to space and enables flight in a constellation to reduce revisit time and enable new measurements including 3D winds. A technology demonstration of CIRAS is currently under development at JPL. The effort has completed integration and ambient testing of a high fidelity brassboard, complete with the flight configured optics assembly developed by Ball Aerospace with a JPL Immersion Grating and Black Silicon Entrance Slit. The brassboard includes a flight-configured High Operating Temperature Barrier Infrared Detector (HOT-BIRD) mounted in an Integrated Dewar Cryocooler Assembly (IDCA), enabling testing in the ambient environment. Ambient testing included radiometric testing of the system to characterize the instrument operability and NEdT. Spatial testing was performed to characterize the system line spread function (LSF) in two axes and report FWHM of the LSF. Spectral testing involved an air path test to characterize the spectral/spatial transformation matrix, and an etalon was used to measure the Spectral Response Functions (SRFs). Results of the testing show the CIRAS performs exceptionally well and meets the key performance required of the system. The end result of testing is the CIRAS instrument now meets TRL 4 with confidence in a brassboard configuration ready for thermal vacuum (TVac) testing necessary to achieve TRL 5 for the system.
引用
收藏
页数:14
相关论文
共 16 条
[1]   Radiometric performance characterization of the CubeSat Infrared Atmospheric Sounder (CIRAS) High Operating Temperature-Barrier Infrared Detectors (HOT-BIRD) [J].
Canas, Chase ;
Pagano, Thomas S. ;
Rafol, Sir B. .
CUBESATS AND SMALLSATS FOR REMOTE SENSING IV, 2020, 11505
[2]   Improving weather forecasting and providing new data on greenhouse gases [J].
Chahine, Moustafa T. ;
Pagano, Thomas S. ;
Aumann, Hartmut H. ;
Atlas, Robert ;
Barnet, Christopher ;
Blaisdell, John ;
Chen, Luke ;
Divakarla, Murty ;
Fetzer, Eric J. ;
Goldberg, Mitch ;
Gautier, Catherine ;
Granger, Stephanie ;
Hannon, Scott ;
Irion, Fredrick W. ;
Kakar, Ramesh ;
Kalnay, Eugenia ;
Lambrigtsen, Bjorn H. ;
Lee, Sung-Yung ;
Le Marshall, John ;
McMillan, W. Wallace ;
McMillin, Larry ;
Olsen, Edward T. ;
Revercomb, Henry ;
Rosenkranz, Philip ;
Smith, William L. ;
Staelin, Did ;
Strow, L. Larrabee ;
Susskind, Joel ;
Tobin, David ;
Wolf, Walter ;
Zhou, Lihang .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2006, 87 (07) :911-+
[3]  
Kampe T.K., 2020, TN20200827TK001
[4]  
Le Marshall J, 2008, AUST METEOROL MAG, V57, P249
[5]   The alternative of CubeSat-based advanced infrared and microwave sounders for high impact weather forecasting [J].
Li Zhenglong ;
Li Jun ;
Schmit, Timothy J. ;
Wang Pei ;
Lim, Agnes ;
Li Jinlong ;
Nagle, Fredrick W. ;
Bai Wenguang ;
Otkin, Jason A. ;
Atlas, Robert ;
Hoffman, Ross N. ;
Boukabara, Sid-Ahmed ;
Zhu Tong ;
Blackwell, William J. ;
Pagano, Thomas S. .
ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2019, 12 (02) :80-90
[6]   Observing System Simulation Experiments Investigating Atmospheric Motion Vectors and Radiances from a Constellation of 4-5-μm Infrared Sounders [J].
McCarty, Will ;
Carvalho, David ;
Moradi, Isaac ;
Prive, Nikki C. .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2021, 38 (02) :331-347
[7]  
Pagano T. S., 2016, P AIAA USU C SMALL S
[8]   Electronic Alignment for the CubeSat Infrared Atmospheric Sounder [J].
Pagano, Thomas S. .
CUBESATS AND SMALLSATS FOR REMOTE SENSING III, 2019, 11131
[9]   CubeSat Infrared Atmospheric Sounder technology development status [J].
Pagano, Thomas S. ;
Abesamis, Carlo ;
Andrade, Andres ;
Aumann, Hartmut ;
Gunapala, Sarath ;
Heneghan, Cate ;
Jarnot, Robert ;
Johnson, Dean ;
Lamborn, Andy ;
Maruyama, Yuki ;
Rafol, Sir ;
Raouf, Nasrat ;
Rider, David ;
Ting, Dave ;
Wilson, Dan ;
Yee, Karl ;
Cole, Jerold ;
Good, Bill ;
Kampe, Tom ;
Soto, Juancarlos ;
Adams, Arn ;
Buckley, Matt ;
Graham, Richard ;
Nicol, Fred ;
Vengel, Tony ;
Moore, John ;
Coleman, Thomas ;
Schneider, Steve ;
Esser, Chris ;
Inlow, Scott ;
Sanders, Devon ;
Hansen, Karl ;
Zeigler, Matt ;
Dumont, Charles ;
Walter, Rebecca ;
Piacentine, Joe .
JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03)
[10]   Technology development in support of hyperspectral infrared atmospheric sounding in a CubeSat [J].
Pagano, Thomas S. ;
Abesamis, Carlo ;
Andrade, Andres ;
Aumann, Hartmut ;
Gunapala, Sarath ;
Heneghan, Cate ;
Jarnot, Robert ;
Johnson, Dean ;
Lamborn, Andy ;
Maruyama, Yuki ;
Rafol, Sir ;
Raouf, Nasrat ;
Rider, David ;
Ting, Dave ;
Wilson, Dan ;
Yee, Karl ;
Cole, Jerold ;
Good, Bill ;
Kampe, Tom ;
Soto, Juancarlos ;
Adams, Arn ;
Buckley, Matt ;
Graham, Richard ;
Nicol, Fred ;
Vengel, Tony ;
Moore, John ;
Coleman, Thomas ;
Schneider, Steve ;
Esser, Chris ;
Inlow, Scott ;
Sanders, Devon ;
Hansen, Karl ;
Zeigler, Matt ;
Dumont, Charles ;
Walter, Rebecca ;
Piacentine, Joe .
CUBESATS AND NANOSATS FOR REMOTE SENSING II, 2018, 10769