Nature of Excitons in Bidimensional WSe2 by Hybrid Density Functional Theory Calculations

被引:12
作者
Liu, Hongsheng [1 ]
Lazzaroni, Paolo [1 ]
Di Valentin, Cristiana [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Sci Mat, Via R Cozzi 55, I-20125 Milan, Italy
关键词
exciton; self-trapping; photoluminescence; excitonic binding energy; modelling; HSE; transition metal dichalcogenides; TRANSITION-METAL DICHALCOGENIDES; ELECTRONIC-STRUCTURE; BINDING-ENERGY; PSEUDOPOTENTIALS; SEMICONDUCTORS; APPROXIMATION; INSULATORS; DIODES; WS2;
D O I
10.3390/nano8070481
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
2D tungsten diselenide (2D-WSe2) is one of the most successful bidimensional materials for optoelectronic and photonic applications, thanks to its strong photoluminescence properties and to a characteristic large exciton binding energy. Although these optical properties are widely recognized by the scientific community, there is no general understanding of the atomistic details of the excitonic species giving rise to them. In this work, we present a density functional theory investigation of excitons in 2D-WSe2, where we compare results obtained by standard generalized gradient approximation (GGA) methods (including spin-orbit coupling) with those by hybrid density functionals. Our study provides information on the size of the self-trapped exciton, the number and type of atoms involved, the structural reorganization, the self-trapping energy, and the photoluminescence energy, whose computed value is in good agreement with experimental measurements in the literature. Moreover, based on the comparative analysis of the self-trapping energy for the exciton with that for isolated charge carriers (unbound electrons and holes), we also suggest a simplified approach for the theoretical estimation of the excitonic binding energy, which can be compared with previous estimates from different approaches or from experimental data.
引用
收藏
页数:17
相关论文
共 58 条
[1]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[2]   DENSITY-FUNCTIONAL THEORY AND NIO PHOTOEMISSION SPECTRA [J].
ANISIMOV, VI ;
SOLOVYEV, IV ;
KOROTIN, MA ;
CZYZYK, MT ;
SAWATZKY, GA .
PHYSICAL REVIEW B, 1993, 48 (23) :16929-16934
[3]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[4]   DENSITY-FUNCTIONAL EXCHANGE-ENERGY APPROXIMATION WITH CORRECT ASYMPTOTIC-BEHAVIOR [J].
BECKE, AD .
PHYSICAL REVIEW A, 1988, 38 (06) :3098-3100
[5]   Time-dependent density-functional theory for extended systems [J].
Botti, Silvana ;
Schindlmayr, Arno ;
Del Sole, Rodolfo ;
Reining, Lucia .
REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (03) :357-407
[6]   Monolayer diodes light up [J].
Bratschitsch, Rudolf .
NATURE NANOTECHNOLOGY, 2014, 9 (04) :247-248
[7]   BAND STRUCTURES OF SOME TRANSITION-METAL DICHALCOGENIDES .3. GROUP VI A - TRIGONAL PRISM MATERIALS [J].
BROMLEY, RA ;
YOFFE, AD ;
MURRAY, RB .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1972, 5 (07) :759-&
[8]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[9]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/NCHEM.1589, 10.1038/nchem.1589]
[10]   Recent development of two-dimensional transition metal dichalcogenides and their applications [J].
Choi, Wonbong ;
Choudhary, Nitin ;
Han, Gang Hee ;
Park, Juhong ;
Akinwande, Deji ;
Lee, Young Hee .
MATERIALS TODAY, 2017, 20 (03) :116-130