Gibbs properties of self-conformal measures and the multifractal formalism

被引:35
作者
Feng, De-Jun [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Math, Sha Tin, Hong Kong, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
D O I
10.1017/S0143385706000952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for any self-conformal measures, without any separation conditions, the multifractal formalism partially holds. The result follows by establishing certain Gibbs properties for self-conformal measures.
引用
收藏
页码:787 / 812
页数:26
相关论文
共 58 条
[1]  
[Anonymous], J THEORETICAL PROBAB, DOI 10.1007/BF02213576
[2]  
Arbeiter M, 1996, MATH NACHR, V181, P5
[3]  
Barral J, 2004, P SYMP PURE MATH, V72, P17
[4]   Multifractal analysis of hyperbolic flows [J].
Barreira, L ;
Saussol, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 214 (02) :339-371
[5]   Multifractal analysis for Lyapunov exponents on nonconformal repellers [J].
Barreira, Luis ;
Gelfert, Katrin .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 267 (02) :393-418
[6]   The validity of the multifractal formalism: Results and examples [J].
Ben Nasr, F ;
Bhouri, I ;
Heurteaux, Y .
ADVANCES IN MATHEMATICS, 2002, 165 (02) :264-284
[7]  
BENNASR F, 1994, CR ACAD SCI I-MATH, V319, P807
[8]   ON THE MULTIFRACTAL ANALYSIS OF MEASURES [J].
BROWN, G ;
MICHON, G ;
PEYRIERE, J .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) :775-790
[9]   MULTIFRACTAL DECOMPOSITIONS OF MORAN FRACTALS [J].
CAWLEY, R ;
MAULDIN, RD .
ADVANCES IN MATHEMATICS, 1992, 92 (02) :196-236
[10]   THE DIMENSION SPECTRUM OF SOME DYNAMIC-SYSTEMS [J].
COLLET, P ;
LEBOWITZ, JL ;
PORZIO, A .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) :609-644