An analysis of the two-vortex case in the Chern-Simons Higgs model

被引:87
作者
Ding, WY [1 ]
Jost, J
Li, JY
Wang, GF
机构
[1] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Asymptotic Behavior; Scalar Field; Parameter Coupling; Gauge Field; Higgs Model;
D O I
10.1007/s005260050100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Extending work of Caffarelli-Yang and Tarantello, we present a variational existence proof for two-vortex solutions of the periodic Chern-Simons Higgs model and analyze the asymptotic behavior of these solutions as the parameter coupling the gauge field with the scalar field tends to 0.
引用
收藏
页码:87 / 97
页数:11
相关论文
共 14 条
[1]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[2]  
Aubin Thierry, 1982, GRUNDLEHREN MATH WIS, V252
[3]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[4]   VORTEX CONDENSATION IN THE CHERN-SIMONS HIGGS-MODEL - AN EXISTENCE THEOREM [J].
CAFFARELLI, LA ;
YANG, YS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :321-336
[5]  
Chen W.X., 1991, J. Geom. Anal., V1, P359
[6]  
DING W, 1997, MULTIPLICITY RESULTS
[7]  
Ding W., 1997, Asian J. Math, V1, P230, DOI [DOI 10.4310/AJM.1997.V1.N2.A3, 10.4310/AJM.1997.v1.n2.a3]
[8]   SHARP BORDERLINE SOBOLEV INEQUALITIES ON COMPACT RIEMANNIAN-MANIFOLDS [J].
FONTANA, L .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (03) :415-454
[9]   MULTIVORTEX SOLUTIONS OF THE ABELIAN CHERN-SIMONS-HIGGS THEORY [J].
HONG, JY ;
KIM, YB ;
PAC, PY .
PHYSICAL REVIEW LETTERS, 1990, 64 (19) :2230-2233
[10]  
Hong M.-C., 1996, GEOMETRIC ANAL CALCU, P99