共 80 条
Blood-Vessel-Inspired Hierarchical Trilayer Scaffolds: PCL/Gelatin-Driven Protein Adsorption and Cellular Interaction
被引:8
作者:
Rodriguez-Soto, Maria A.
[1
]
Garcia-Brand, Andres J.
[1
]
Riveros, Alejandra
[1
]
Suarez, Natalia A.
[1
]
Serrano, Fidel
[1
]
Osma, Johann F.
[2
]
Munoz Camargo, Carolina
[1
]
Cruz, Juan C.
[1
]
Sandoval, Nestor
[3
]
Briceno, Juan C.
[1
,4
]
机构:
[1] Univ los Andes, Dept Biomed Engn, Bogota 111711, Colombia
[2] Univ los Andes, Dept Elect & Elect Engn, Bogota 111711, Colombia
[3] Fdn CardioInfantil, Dept Congenital Heart Dis & Pediat Cardiovasc Sur, Bogota 110131, Colombia
[4] Fdn Cardioinfantil, Inst Cardiol, Res Dept, Bogota 110131, Colombia
来源:
关键词:
polycaprolactone;
oxidation;
electrospinning;
protein adsorption;
hierarchical structures;
GRAPHENE OXIDE;
VASCULAR GRAFT;
ARTERIAL STRUCTURE;
POLYCAPROLACTONE;
SURFACE;
POLY(EPSILON-CAPROLACTONE);
ENDOTHELIALIZATION;
CRYSTALLIZATION;
CONFORMATION;
PLATFORM;
D O I:
10.3390/polym14112135
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
Fabrication of scaffolds with hierarchical structures exhibiting the blood vessel topological and biochemical features of the native extracellular matrix that maintain long-term patency remains a major challenge. Within this context, scaffold assembly using biodegradable synthetic polymers (BSPs) via electrospinning had led to soft-tissue-resembling microstructures that allow cell infiltration. However, BSPs fail to exhibit the sufficient surface reactivity, limiting protein adsorption and/or cell adhesion and jeopardizing the overall graft performance. Here, we present a methodology for the fabrication of three-layered polycaprolactone (PCL)-based tubular structures with biochemical cues to improve protein adsorption and cell adhesion. For this purpose, PCL was backbone-oxidized (O-PCL) and cast over a photolithography-manufactured microgrooved mold to obtain a bioactive surface as demonstrated using a protein adsorption assay (BSA), Fourier transform infrared spectroscopy (FTIR) and calorimetric analyses. Then, two layers of PCL:gelatin (75:25 and 95:5 w/w), obtained using a novel single-desolvation method, were electrospun over the casted O-PCL to mimic a vascular wall with a physicochemical gradient to guide cell adhesion. Furthermore, tensile properties were shown to withstand the physiological mechanical stresses and strains. In vitro characterization, using L929 mouse fibroblasts, demonstrated that the multilayered scaffold is a suitable platform for cell infiltration and proliferation from the innermost to the outermost layer as is needed for vascular wall regeneration. Our work holds promise as a strategy for the low-cost manufacture of next-generation polymer-based hierarchical scaffolds with high bioactivity and resemblance of ECM's microstructure to accurately guide cell attachment and proliferation.
引用
收藏
页数:25
相关论文