CONVERGENCE ANALYSIS OF A FULLY DISCRETE FINITE DIFFERENCE SCHEME FOR THE CAHN-HILLIARD-HELE-SHAW EQUATION

被引:118
作者
Chen, Wenbin [1 ]
Liu, Yuan [2 ]
Wang, Cheng [3 ]
Wise, Steven M. [4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai Key Lab Contemporary Appl Math, Shanghai 200433, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[3] Univ Massachusetts, Dept Math, N Dartmouth, MA 02747 USA
[4] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Cahn-Hilliard-Hele-Shaw; Darcy's law; convex splitting; finite difference method; unconditional energy stability; discrete Gagliardo-Nirenberg inequality; discrete Gronwall inequality; DIFFUSE INTERFACE MODEL; ENERGY STABLE SCHEME; THIN-FILM MODEL; ELEMENT-METHOD; ALLEN-CAHN; APPROXIMATIONS; FLUID; RECONNECTION; SIMULATION; STABILITY;
D O I
10.1090/mcom3052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an error analysis for an unconditionally energy stable, fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation, a modified Cahn-Hilliard equation coupled with the Darcy flow law. The scheme, proposed by S. M. Wise, is based on the idea of convex splitting. In this paper, we rigorously prove first order convergence in time and second order convergence in space. Instead of the (discrete) L-s(infinity) (0, T; L-h(2))boolean AND L-s(2) (0, T; H-h(2)) error estimate, which would represent the typical approach, we provide a discrete L-s(infinity) (0, T; H-h(1))boolean AND L-s(2) (0, T; H-h(3)) error estimate for the phase variable, which allows us to treat the nonlinear convection term in a straightforward way. Our convergence is unconditional in the sense that the time step s is in no way constrained by the mesh spacing h. This is accomplished with the help of an L-s(2) (0, T; H-h(3)) bound of the numerical approximation of the phase variable. To facilitate both the stability and convergence analyses, we establish a finite difference analog of a Gagliardo-Nirenberg type inequality.
引用
收藏
页码:2231 / 2257
页数:27
相关论文
共 48 条
[1]  
Adams R. A., 1975, PURE APPL MATH, V65
[2]   THE SPECTRUM OF THE CAHN-HILLIARD OPERATOR FOR GENERIC INTERFACE IN HIGHER SPACE DIMENSIONS [J].
ALIKAKOS, ND ;
FUSCO, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1993, 42 (02) :637-674
[3]   CONVERGENCE OF THE CAHN-HILLIARD EQUATION TO THE HELE-SHAW MODEL [J].
ALIKAKOS, ND ;
BATES, PW ;
CHEN, XF .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 128 (02) :165-205
[4]   Diffuse-interface methods in fluid mechanics [J].
Anderson, DM ;
McFadden, GB ;
Wheeler, AA .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :139-165
[5]  
BAKER GA, 1982, MATH COMPUT, V39, P339, DOI 10.1090/S0025-5718-1982-0669634-0
[6]   Adaptive finite element methods for Cahn-Hilliard equations [J].
Banas, L'ubomir ;
Nurnberg, Robert .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (01) :2-11
[7]   A POSTERIORI ESTIMATES FOR THE CAHN-HILLIARD EQUATION WITH OBSTACLE FREE ENERGY [J].
Banas, L'ubomir ;
Nuernberg, Robert .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05) :1003-1026
[8]  
Barrett JW, 1999, RAIRO-MATH MODEL NUM, V33, P971
[9]   CONVERGENCE ANALYSIS OF A SECOND ORDER CONVEX SPLITTING SCHEME FOR THE MODIFIED PHASE FIELD CRYSTAL EQUATION [J].
Baskaran, A. ;
Lowengrub, J. S. ;
Wang, C. ;
Wise, S. M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (05) :2851-2873
[10]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267