Tactile Sensing Applied to the Universal Gripper Using Conductive Thermoplastic Elastomer

被引:35
作者
Hughes, Josie [1 ]
Iida, Fumiya [1 ]
机构
[1] Univ Cambridge, Dept Engn, Bioinspired Robot Lab, Trumpington St, Cambridge CB2 1PZ, England
基金
英国工程与自然科学研究理事会;
关键词
soft sensing; CTPE; universal gripper; STRAIN SENSORS; SOFT; DESIGN; SKIN;
D O I
10.1089/soro.2017.0089
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
There is increasing interest in the use of soft materials in robotic applications ranging from wearable devices to soft grippers. While soft structures provide a number of favorable properties to robotic systems, sensing of large deformable soft structures is still a considerable challenge; sensors must not inhibit the mechanical properties of the soft body, and the potential infinite degree-of-freedom deformations mean that there is an intrinsically limited resolution of the sensing receptors. An approach to address these challenges using a conductive thermoplastic elastomer is proposed. This allows sensory strain information to be gained from deforming structures without disturbing the dynamics of the system enabling coverage of large soft surfaces. In this article, a theoretical framework is developed, which provides a set of design principles to optimize and characterize sensor implementation, allowing maximum information about location, posture, and shape of the object to be determined. The proposed approach has been tested experimentally for the case study of the universal gripper; investigating how a sensorized gripper can allow a robot to identify grasped objects to enable improved gripping and manipulation performance.
引用
收藏
页码:512 / 526
页数:15
相关论文
共 36 条
[1]   Soft Robotics Commercialization: Jamming Grippers from Research to Product [J].
Amend, John ;
Cheng, Nadia ;
Fakhouri, Sami ;
Culley, Bill .
SOFT ROBOTICS, 2016, 3 (04) :213-222
[2]   A Positive Pressure Universal Gripper Based on the Jamming of Granular Material [J].
Amend, John R., Jr. ;
Brown, Eric ;
Rodenberg, Nicholas ;
Jaeger, Heinrich M. ;
Lipson, Hod .
IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (02) :341-350
[3]   Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review [J].
Amjadi, Morteza ;
Kyung, Ki-Uk ;
Park, Inkyu ;
Sitti, Metin .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (11) :1678-1698
[4]   Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite [J].
Amjadi, Morteza ;
Pichitpajongkit, Aekachan ;
Lee, Sangjun ;
Ryu, Seunghwa ;
Park, Inkyu .
ACS NANO, 2014, 8 (05) :5154-5163
[5]   On the Problem of the Automated Design of Large-Scale Robot Skin [J].
Anghinolfi, Davide ;
Cannata, Giorgio ;
Mastrogiovanni, Fulvio ;
Nattero, Cristiano ;
Paolucci, Massimo .
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2013, 10 (04) :1087-1100
[6]  
[Anonymous], 2012, Robotic Tactile Sensing
[7]   25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters [J].
Bauer, Siegfried ;
Bauer-Gogonea, Simona ;
Graz, Ingrid ;
Kaltenbrunner, Martin ;
Keplinger, Christoph ;
Schwoediauer, Reinhard .
ADVANCED MATERIALS, 2014, 26 (01) :149-162
[8]   Universal robotic gripper based on the jamming of granular material [J].
Brown, Eric ;
Rodenberg, Nicholas ;
Amend, John ;
Mozeika, Annan ;
Steltz, Erik ;
Zakin, Mitchell R. ;
Lipson, Hod ;
Jaeger, Heinrich M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (44) :18809-18814
[9]   Flexible and stretchable fabric-based tactile sensor [J].
Buescher, Gereon H. ;
Koiva, Risto ;
Schuermann, Carsten ;
Haschke, Robert ;
Ritter, Helge J. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2015, 63 :244-252
[10]   A Soft Strain Sensor Based on Ionic and Metal Liquids [J].
Chossat, Jean-Baptiste ;
Park, Yong-Lae ;
Wood, Robert J. ;
Duchaine, Vincent .
IEEE SENSORS JOURNAL, 2013, 13 (09) :3405-3414