Transformation of the superconducting gap to an insulating pseudogap at a critical hole density in the cuprates

被引:6
|
作者
Liu, Ye-Hua [1 ]
Wang, Wan-Sheng [2 ,3 ,4 ]
Wang, Qiang-Hua [2 ,3 ,5 ]
Zhang, Fu-Chun [5 ,6 ]
Rice, T. M. [1 ,7 ]
机构
[1] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Nanjing Univ, Sch Phys, Nanjing 210093, Jiangsu, Peoples R China
[4] Ningbo Univ, Dept Phys, Ningbo 315211, Zhejiang, Peoples R China
[5] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[6] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[7] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Dept, Upton, NY 11973 USA
关键词
2-CHAIN HUBBARD-MODEL; STATE; FLUCTUATIONS; EXCITATIONS; YBA2CU4O8; ORDERS; PHASE;
D O I
10.1103/PhysRevB.96.014522
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We apply the recent wave-packet formalism developed by Ossadnik to describe the origin of the short-range ordered pseudogap state as the hole doping is lowered through a critical density in cuprates. We argue that the energy gain that drives this precursor state to Mott localization, follows from maximizing umklapp scattering near the Fermi energy. To this end, we show how energy gaps driven by umklapp scattering can open on an appropriately chosen surface, as proposed earlier by Yang, Rice, and Zhang. The key feature is that the pairing instability includes umklapp scattering, leading to an energy gap not only in the single-particle spectrum but also in the pair spectrum. As a result the superconducting gap at overdoping is turned into an insulating pseudogap in the antinodal parts of the Fermi surface.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Implications of tunneling studies on high-Tc cuprates:: superconducting gap and pseudogap
    Miyakawa, N
    Zasadzinski, JF
    Oonuki, S
    Asano, M
    Henmi, D
    Kaneko, T
    Ozyuzer, L
    Gray, KE
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2001, 364 : 475 - 479
  • [22] Pseudogap phenomena in the superconducting phase of the cuprates
    Kosztin, I
    Chen, QJ
    Jankó, B
    Levin, K
    HIGH TEMPERATURE SUPERCONDUCTIVITY, 1999, 483 : 57 - 62
  • [23] Pseudogap and symmetry of superconducting order in cuprates
    Institute of Chemical Physics of RAS, Moscow, 117977, Russia
    Phys Lett Sect A Gen At Solid State Phys, 5-6 (531-536):
  • [24] Superconducting gap and pseudogap
    Deutscher, Guy
    Fizika Nizkikh Temperatur (Kharkov), 2006, 32 (06): : 740 - 745
  • [25] Superconducting gap and pseudogap
    Deutscher, G.
    LOW TEMPERATURE PHYSICS, 2006, 32 (06) : 566 - 570
  • [26] Gap and pseudogap evolution in underdoped cuprates
    Benfatto, L
    Caprara, S
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (25-27): : 3006 - 3011
  • [27] Pair Breaking, Pseudogap, and Superconducting Tc of Hole-Doped Cuprates: Interrelations and Implications
    S. H. Naqib
    R. S. Islam
    Ihtisham Qabid
    Journal of Superconductivity and Novel Magnetism, 2019, 32 : 1617 - 1622
  • [28] Spectral weight of hole-doped cuprates across the pseudogap critical point
    Michon, B.
    Kuzmenko, A. B.
    Tran, M. K.
    McElfresh, B.
    Komiya, S.
    Ono, S.
    Uchida, S.
    van der Marel, D.
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [29] Pseudogap and symmetry of superconducting order parameter in cuprates
    Ovchinnikov, AA
    Ovchinnikova, MY
    Plekhanov, EA
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1999, 88 (02) : 356 - 369
  • [30] Superconducting fluctuations, pseudogap and phase diagram in cuprates
    Alloul, H.
    Rullier-Albenque, F.
    Vignolle, B.
    Colson, D.
    Forget, A.
    EPL, 2010, 91 (03)